在 R 中使用 RNN (Keras) 进行时间序列预测
Posted
技术标签:
【中文标题】在 R 中使用 RNN (Keras) 进行时间序列预测【英文标题】:Time Series prediction using RNNs (Keras) in R 【发布时间】:2018-12-23 15:23:25 【问题描述】:我正在关注 Chollet 的 Deep learning with R 方法 (fitting RNNs to time series data) 来拟合 RNN 以进行时间序列预测。
model <- keras_model_sequential() %>%
layer_gru(units = 32,
dropout = 0.1,
recurrent_dropout = 0.5,
return_sequences = TRUE,
input_shape = list(NULL, dim(data)[[-1]])) %>%
layer_gru(units = 64, activation = "relu",
dropout = 0.1,
recurrent_dropout = 0.5) %>%
layer_dense(units = 1)
model %>% compile(
optimizer = optimizer_rmsprop(),
loss = "mae"
)
history <- model %>% fit_generator(
train_gen,
steps_per_epoch = 500,
epochs = 40,
validation_data = val_gen,
validation_steps = val_steps
)
在这里,训练、验证和测试数据是使用以下方法生成的:
lookback <- 1440
step <- 6
delay <- 144
batch_size <- 128
train_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 1,
max_index = 200000,
shuffle = TRUE,
step = step,
batch_size = batch_size
)
val_gen = generator(
data,
lookback = lookback,
delay = delay,
min_index = 200001,
max_index = 300000,
step = step,
batch_size = batch_size
)
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
# How many steps to draw from val_gen in order to see the entire validation set
val_steps <- (300000 - 200001 - lookback) / batch_size
# How many steps to draw from test_gen in order to see the entire test set
test_steps <- (nrow(data) - 300001 - lookback) / batch_size
在此之后,我阅读了 Keras 文档并找到了预测功能。要查找测试数据的预测:
m <- model %>% evaluate_generator(test_gen, steps = test_steps)
m
但是,它只给出测试数据的损失值。
我的问题是,如何获得测试数据集中每个点的预测,就像我们可以在其他时间序列方法中获得的一样?如何绘制这些预测值和实际值?
【问题讨论】:
Understanding Keras prediction output of a rnn model in R的可能重复 是的,使用predict_generator
,而不是evaluate_generator
。
【参考方案1】:
在我看来,您需要重新定义generator
,您只需要获取samples
作为输出。按照你的例子:
# generator function
generator <- function(data, lookback, delay, min_index, max_index,
shuffle = FALSE, batch_size = 128, step = 6)
if (is.null(max_index))
max_index <- nrow(data) - delay - 1
i <- min_index + lookback
function()
if (shuffle)
rows <- sample(c((min_index+lookback):max_index), size = batch_size)
else
if (i + batch_size >= max_index)
i <<- min_index + lookback
rows <- c(i:min(i+batch_size-1, max_index))
i <<- i + length(rows)
samples <- array(0, dim = c(length(rows),
lookback / step,
dim(data)[[-1]]))
targets <- array(0, dim = c(length(rows)))
for (j in 1:length(rows))
indices <- seq(rows[[j]] - lookback, rows[[j]]-1,
length.out = dim(samples)[[2]])
samples[j,,] <- data[indices,]
targets[[j]] <- data[rows[[j]] + delay,2]
list(samples) # just the samples, (quick and dirty solution, I just removed targets)
# test_gen is the same
test_gen <- generator(
data,
lookback = lookback,
delay = delay,
min_index = 300001,
max_index = NULL,
step = step,
batch_size = batch_size
)
现在您可以拨打predict_generator
:
preds <- model %>% predict_generator(test_gen, steps = test_steps)
但现在你需要去规范化这些,因为你在拟合之前缩放了每个变量。
denorm_pred = preds * std + mean
注意std
和mean
应该在T (degC)
上计算只 在train
数据上,否则你会过拟合。
【讨论】:
以上是关于在 R 中使用 RNN (Keras) 进行时间序列预测的主要内容,如果未能解决你的问题,请参考以下文章
Keras 如何处理单元格和隐藏状态(RNN、LSTM)的初始值以进行推理?
Tensorflow.keras:RNN 对 Mnist 进行分类