tensorflow:使用自定义生成器时您的输入用完了数据
Posted
技术标签:
【中文标题】tensorflow:使用自定义生成器时您的输入用完了数据【英文标题】:tensorflow:Your input ran out of data when using custom generator 【发布时间】:2021-11-25 02:56:09 【问题描述】:我正在使用自定义生成器来传递我的数据。但是我一直遇到一个错误,说我已经用完了数据并在传递数据集时使用了 repeat()。我使用的是普通生成器,因此无法使用 repeat()。有人可以帮我解决这个问题吗
import os
import numpy as np
import cv2
def generator(idir,odir,batch_size,shuffle ):
i_list=os.listdir(idir)
o_list=os.listdir(odir)
batch_index=0
batch_size = batch_size
sample_count=len(i_list)
while True:
input_image_batch=[]
output_image_batch=[]
for i in range(batch_index * batch_size, (batch_index + 1) * batch_size ):
#iterate for a batch
j=i % sample_count # cycle j value over range of available images
k=j % batch_size # cycle k value over batch size
if shuffle == True: # if shuffle select a random integer between 0 and sample_count-1 to pick as the image=label pair
m=np.random.randint(low=0, high=sample_count-1, size=None, dtype=int)
else:
m=j
path_to_in_img=os.path.join(idir,i_list[m])
path_to_out_img=os.path.join(odir,o_list[m])
print(path_to_in_img,path_to_out_img)
input_image=cv2.imread(path_to_in_img)
input_image=cv2.resize(input_image,(3200,3200))#create the target image from the input image
output_image=cv2.imread(path_to_out_img)
output_image=cv2.resize(output_image,(3200,3200))
input_image_batch.append(input_image)
output_image_batch.append(output_image)
input_val1image_array=np.array(input_image_batch)
input_val1image_array = input_val1image_array / 255.0
print (input_val1image_array)
output_val2image_array=np.array(output_image_batch)
output_val2image_array = output_val2image_array / 255.0
batch_index= batch_index + 1
yield (input_val1image_array, output_val2image_array)
if batch_index * batch_size > sample_count:
break
调用函数
idir = r"D:\\image\\"
odir=r"D:\\image1\\"
train = generator(idir,odir,4,True)
model.compile(optimizer="adam", loss='mean_squared_error', metrics=['mean_squared_error'])
model.fit(train,validation_data = (valin_images,valout_images),batch_size= 5,epochs = 20,steps_per_epoch = int(560/batch_size))
错误
Epoch 1/20
186/186 [==============================] - 475s 3s/step - loss: 1779.7604 - mean_squared_error: 1779.7601 - val_loss: 28278.5488 - val_mean_squared_error: 28278.5488
Epoch 2/20
1/186 [..............................] - ETA: 1:41 - loss: 275.7113 - mean_squared_error: 275.7113WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 3720 batches). You may need to use the repeat() function when building your dataset.
WARNING:tensorflow:Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches (in this case, 187 batches). You may need to use the repeat() function when building your dataset.
186/186 [==============================] - 1s 235us/step - loss: 275.7113 - mean_squared_error: 275.7113
【问题讨论】:
【参考方案1】:如果您不使用重复(即使您使用它对调试很有用),您需要检查的第一件事是您的生成器创建了多少元素。 一种快速的方法是使用类似
len([g for g in generator(idir,odir,4,True)])
那么您需要确保每个 epoch 的步数乘以批量大小小于该数字。
即使使用该生成器,您也可以使用 repeat - 您只需要像这样用 tf.dataset 包装它:
gen = lambda : generator(idir,odir,4,True)
dataset = tf.data.Dataset.from_generator(gen, output_types=(<types>), output_shapes=(<shapes>)).repeat()
您必须指定输出类型和形状,但它可以正常工作。
【讨论】:
以上是关于tensorflow:使用自定义生成器时您的输入用完了数据的主要内容,如果未能解决你的问题,请参考以下文章
Springboot 2.0.x Redis缓存Key生成器,自定义生成器
教义 orm:generate-proxies 抛出“无法实例化自定义生成器”