我使用 Torchvision RetinaNet 的输入数据结构有问题吗?

Posted

技术标签:

【中文标题】我使用 Torchvision RetinaNet 的输入数据结构有问题吗?【英文标题】:Problem with my input data structure using Torchvision RetinaNet? 【发布时间】:2021-12-15 16:22:55 【问题描述】:

我相信我的输入数据具有 Torchvision RetinaNet 要求的正确结构,但是我收到一个错误,暗示可能不是。我已经包含了回调和重现问题的最小示例。

在分类头中计算损失时发生此错误。它不会在回归头中发生计算损失。

这是回调

---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
/tmp/ipykernel_1483/2833406441.py in <module>
     41 img_batch, targets_batch = retinanet_collate_fn(batch_size=2)
     42 
---> 43 outputs = model(img_batch, targets_batch)

/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
   1100         if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
   1101                 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1102             return forward_call(*input, **kwargs)
   1103         # Do not call functions when jit is used
   1104         full_backward_hooks, non_full_backward_hooks = [], []

/opt/conda/lib/python3.7/site-packages/torchvision/models/detection/retinanet.py in forward(self, images, targets)
    530 
    531             # compute the losses
--> 532             losses = self.compute_loss(targets, head_outputs, anchors)
    533         else:
    534             # recover level sizes

/opt/conda/lib/python3.7/site-packages/torchvision/models/detection/retinanet.py in compute_loss(self, targets, head_outputs, anchors)
    394             matched_idxs.append(self.proposal_matcher(match_quality_matrix))
    395 
--> 396         return self.head.compute_loss(targets, head_outputs, anchors, matched_idxs)
    397 
    398     def postprocess_detections(self, head_outputs, anchors, image_shapes):

/opt/conda/lib/python3.7/site-packages/torchvision/models/detection/retinanet.py in compute_loss(self, targets, head_outputs, anchors, matched_idxs)
     49         # type: (List[Dict[str, Tensor]], Dict[str, Tensor], List[Tensor], List[Tensor]) -> Dict[str, Tensor]
     50         return 
---> 51             'classification': self.classification_head.compute_loss(targets, head_outputs, matched_idxs),
     52             'bbox_regression': self.regression_head.compute_loss(targets, head_outputs, anchors, matched_idxs),
     53         

/opt/conda/lib/python3.7/site-packages/torchvision/models/detection/retinanet.py in compute_loss(self, targets, head_outputs, matched_idxs)
    113                 foreground_idxs_per_image,
    114                 targets_per_image['labels'][matched_idxs_per_image[foreground_idxs_per_image]]
--> 115             ] = 1.0
    116 
    117             # find indices for which anchors should be ignored

IndexError: index 1 is out of bounds for dimension 1 with size 1

小例子:

''' Adapted from example in PyTorch code '''
import torch
import torchvision
from torchvision.models.detection.anchor_utils import AnchorGenerator
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
from torchvision.models.detection import RetinaNet

''' Backbone '''
backbone = resnet_fpn_backbone('resnet18', pretrained=False, trainable_layers=4)
backbone.out_channels = 256

''' Anchor Generator '''
anchor_sizes = ((32,), (64,), (128,), (256,), (512,)) 
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes) 
anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)

''' Model '''
model = RetinaNet(backbone,
                  num_classes=1,
                  anchor_generator=anchor_generator)

def __getitem__():
    img = torch.rand(3, 256, 256)
    bboxes = []
    bboxes = [[15, 15, 20, 20]]*20
    bboxes = torch.FloatTensor(bboxes)
    labels = torch.LongTensor(np.ones(len(bboxes), dtype=int))
    targets = 'boxes':bboxes, 'labels':torch.LongTensor(labels)
    return img, targets

def retinanet_collate_fn(batch_size=2):
    img_batch = []
    targets_batch = []
    for i in range(batch_size):
        img, targets = __getitem__()
        img_batch.append(img)
        targets_batch.append(targets)
    return img_batch, targets_batch
    

img_batch, targets_batch = retinanet_collate_fn(batch_size=2)

outputs = model(img_batch, targets_batch)

【问题讨论】:

【参考方案1】:

问题已解决。我设置 num_classes = 1,所以分类器期待“0”而不是“1”。我以为背景会自动为0,我的单类为1,但事实并非如此。

【讨论】:

以上是关于我使用 Torchvision RetinaNet 的输入数据结构有问题吗?的主要内容,如果未能解决你的问题,请参考以下文章

RetinaNet——使用Focal Loss解决物体检测中的样本均衡问题

深度学习目标检测网络结构SSD RETINANET

RetinaNet

一阶段目标检测网络-RetinaNet 详解

目标检测论文解读12——RetinaNet

RetinaNet Detector首个但阶段检测算法