正方形检测找不到正方形
Posted
技术标签:
【中文标题】正方形检测找不到正方形【英文标题】:Square detection doesn't find squares 【发布时间】:2011-12-05 14:44:52 【问题描述】:我正在使用 OpenCV 库示例中提供的程序 squares.c。它适用于每张图片,但我真的无法弄清楚为什么它无法识别该图片中绘制的正方形
http://desmond.imageshack.us/Himg12/scaled.php?server=12&filename=26725680.jpg&res=medium
康力之后:
扩张之后:
结果图片(红色) http://img267.imageshack.us/img267/8016/resultuq.jpg
如您所见,未检测到正方形。
检测后我需要提取正方形中包含的区域...没有ROI怎么可能?
【问题讨论】:
您的图片似乎丢失了。您是否有机会重新上传或重新创建它们? 【参考方案1】:我建议您在这张图片中的正方形太薄了。 squares.c 中的第一步是在传递给 Canny 边缘检测器之前缩小和备份图像以减少噪声。
缩放与 5x5 内核卷积,因此在您的情况下,这可能会导致在如此薄的边缘丢失任何梯度。
如果要将正方形的边缘覆盖在连续背景上,请尝试使它们的边缘至少为 5 像素。
【讨论】:
可惜正方形已经画好了,我只需要提取出来【参考方案2】:下面的源代码展示了 Square Detector 程序的一个小变种。它并不完美,但它说明了解决问题的一种方法。
您可以区分此代码与原始代码并检查所做的所有更改,但主要是:
将阈值级别的数量减少到 2。
在findSquares()
的开头,扩张图像以检测细白方块,然后模糊整个图像,这样算法就不会将海洋和天空检测为单独的正方形。
编译后,使用以下语法运行应用程序:./app <image>
// The "Square Detector" program.
// It loads several images sequentially and tries to find squares in
// each image
#include "highgui.h"
#include "cv.h"
#include <iostream>
#include <math.h>
#include <string.h>
using namespace cv;
using namespace std;
void help()
cout <<
"\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
"memory storage (it's got it all folks) to find\n"
"squares in a list of images pic1-6.png\n"
"Returns sequence of squares detected on the image.\n"
"the sequence is stored in the specified memory storage\n"
"Call:\n"
"./squares\n"
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
int thresh = 50, N = 2; // karlphillip: decreased N to 2, was 11.
const char* wndname = "Square Detection Demo";
// helper function:
// finds a cosine of angle between vectors
// from pt0->pt1 and from pt0->pt2
double angle( Point pt1, Point pt2, Point pt0 )
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
// returns sequence of squares detected on the image.
// the sequence is stored in the specified memory storage
void findSquares( const Mat& image, vector<vector<Point> >& squares )
squares.clear();
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
// karlphillip: dilate the image so this technique can detect the white square,
Mat out(image);
dilate(out, out, Mat(), Point(-1,-1));
// then blur it so that the ocean/sea become one big segment to avoid detecting them as 2 big squares.
medianBlur(out, out, 7);
// down-scale and upscale the image to filter out the noise
pyrDown(out, pyr, Size(out.cols/2, out.rows/2));
pyrUp(pyr, timg, out.size());
vector<vector<Point> > contours;
// find squares in every color plane of the image
for( int c = 0; c < 3; c++ )
int ch[] = c, 0;
mixChannels(&timg, 1, &gray0, 1, ch, 1);
// try several threshold levels
for( int l = 0; l < N; l++ )
// hack: use Canny instead of zero threshold level.
// Canny helps to catch squares with gradient shading
if( l == 0 )
// apply Canny. Take the upper threshold from slider
// and set the lower to 0 (which forces edges merging)
Canny(gray0, gray, 0, thresh, 5);
// dilate canny output to remove potential
// holes between edge segments
dilate(gray, gray, Mat(), Point(-1,-1));
else
// apply threshold if l!=0:
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
gray = gray0 >= (l+1)*255/N;
// find contours and store them all as a list
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
vector<Point> approx;
// test each contour
for( size_t i = 0; i < contours.size(); i++ )
// approximate contour with accuracy proportional
// to the contour perimeter
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
// square contours should have 4 vertices after approximation
// relatively large area (to filter out noisy contours)
// and be convex.
// Note: absolute value of an area is used because
// area may be positive or negative - in accordance with the
// contour orientation
if( approx.size() == 4 &&
fabs(contourArea(Mat(approx))) > 1000 &&
isContourConvex(Mat(approx)) )
double maxCosine = 0;
for( int j = 2; j < 5; j++ )
// find the maximum cosine of the angle between joint edges
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
maxCosine = MAX(maxCosine, cosine);
// if cosines of all angles are small
// (all angles are ~90 degree) then write quandrange
// vertices to resultant sequence
if( maxCosine < 0.3 )
squares.push_back(approx);
// the function draws all the squares in the image
void drawSquares( Mat& image, const vector<vector<Point> >& squares )
for( size_t i = 0; i < squares.size(); i++ )
const Point* p = &squares[i][0];
int n = (int)squares[i].size();
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
imshow(wndname, image);
int main(int argc, char** argv)
if (argc < 2)
cout << "Usage: ./program <file>" << endl;
return -1;
// static const char* names[] = "pic1.png", "pic2.png", "pic3.png",
// "pic4.png", "pic5.png", "pic6.png", 0 ;
static const char* names[] = argv[1], 0 ;
help();
namedWindow( wndname, 1 );
vector<vector<Point> > squares;
for( int i = 0; names[i] != 0; i++ )
Mat image = imread(names[i], 1);
if( image.empty() )
cout << "Couldn't load " << names[i] << endl;
continue;
findSquares(image, squares);
drawSquares(image, squares);
imwrite("out.jpg", image);
int c = waitKey();
if( (char)c == 27 )
break;
return 0;
输出:
【讨论】:
谢谢您 karlphillip...您的更正现在脚本工作正常。但是如果我想提取一个只包含正方形区域的子图像呢?可能吗? (在这种情况下,我们没有 ROI,只有一个正方形序列) 是的,您需要从一组 4 个cv::Point
中创建一个 cv::Mat
。因为 *** 不是聊天,所以让我们为每个线程保留一个问题。如果您有更多问题,请随时在新主题中提问。
但是为了说明这个例子的过程,由于应用程序有一个正方形向量,你应该这样做:for (size_t x = 0; x < squares.size(); x++) Rect roi(squares[x][0].x, squares[x][0].y, squares[x][1].x - squares[x][0].x, squares[x][3].y - squares[x][0].y); Mat subimage(image, roi);
,它会生成一个新的 Mat为原始图像中检测到的所有正方形调用subimage
。
记住:图像中检测到的点可能不代表一个完美的正方形(如上图所示),但我刚刚向您建议的代码 假设他们这样做。
卡尔,谢谢你的好意。正如你所建议的,我创建了一个新线程:***.com/questions/7755647/…以上是关于正方形检测找不到正方形的主要内容,如果未能解决你的问题,请参考以下文章