opencv库中houghcircle函数中的dp参数究竟是如何工作的?

Posted

技术标签:

【中文标题】opencv库中houghcircle函数中的dp参数究竟是如何工作的?【英文标题】:How exactly does the dp parameter in the houghcircle function in the opencv library work? 【发布时间】:2014-08-29 04:13:20 【问题描述】:

我试图了解 .houghcircles() 函数,但我不完全了解 dp 如何影响结果。

抬头看http://docs.opencv.org/modules/imgproc/doc/feature_detection.html?highlight=houghcircles#houghcircles,上面写着:

dp – 累加器分辨率与图像的反比 例如,如果 dp=1 ,则累加器具有相同的 分辨率作为输入图像。如果 dp=2 ,累加器有一半 宽高大。

假设您有一张 1000x1000 的图片。然后将 dp 设置为 3,所以累加器只能看到图像的 1/3?还是类似,图像大小保持不变但看到的像素数更少?即原始图像中的 3 个像素与累加器看到的 1 个像素相关,就像原始图像“模糊”一样?

通过了解其他参数然后摆弄dp,我已经成功地准确检测出碗中红苹果的数量。

也许我对累加器的理解也不正确,因为两者是相关的?据我了解,它是一个区域被“命中”的次数,但我不确定它是如何计算“命中区域”的

我的代码需要一碗苹果,转换为 HSV,抓取微红色的色调,使用 bitWiseOr 将其转换为黑色或白色(不是灰度格式),然后执行一些 .erode() / .dilate() 以减少噪音,然后.houghcircles().

我生成的图像看起来像这样http://i.imgur.com/iGyr7TG.jpg

提前致谢。

【问题讨论】:

【参考方案1】:

动词讲解, 示例 trahunt。

最好在交互式 GUI 演示中看到

一个可配置的 UI 面板允许通过移动几个滑块来调整参数


import sys
import cv2
import math
import numpy
from scipy.ndimage import label
pi_4 = 4*math.pi

def nothing_asCallback(x):
    pass

def GUI_openCV_circles():
    # --------------------------------------------------------------------------------GUI-<image>
    frame = cv2.imread(  "openCV_CircleDetection_IMG_LASSO_AREA.JPG" )
    demo  = frame[:800,:800,:]
    # --------------------------------------------------------------------------------GUI-<window>-s
    cv2.namedWindow( "DEMO.IN",             cv2.cv.CV_WINDOW_AUTOSIZE )
    cv2.namedWindow( "DEMO.Canny",          cv2.cv.CV_WINDOW_AUTOSIZE )
    cv2.namedWindow( "DEMO.Canny.Circles",  cv2.cv.CV_WINDOW_AUTOSIZE )
    # --------------------------------------------------------------------------------GUI-<state>-initial-value(s)
    aKeyPRESSED                                     = None              # .init

    aCanny_LoTreshold                               = 127
    aCanny_LoTreshold_PREVIOUS                      =  -1
    aCanny_HiTreshold                               = 255
    aCanny_HiTreshold_PREVIOUS                      =  -1

    aHough_dp                                       =   1
    aHough_dp_PREVIOUS                              =  -1
    aHough_minDistance                              =  10
    aHough_minDistance_PREVIOUS                     =  -1
    aHough_param1_aCannyHiTreshold                  = 255
    aHough_param1_aCannyHiTreshold_PREVIOUS         =  -1
    aHough_param2_aCentreDetectTreshold             =  20
    aHough_param2_aCentreDetectTreshold_PREVIOUS    =  -1
    aHough_minRadius                                =  10
    aHough_minRadius_PREVIOUS                       =  -1
    aHough_maxRadius                                =  30
    aHough_maxRadius_PREVIOUS                       =  -1
    # --------------------------------------------------------------------------------GUI-<ACTOR>-s
    cv2.createTrackbar( "Lo_Treshold",          "DEMO.Canny",          aCanny_LoTreshold,                      255, nothing_asCallback )
    cv2.createTrackbar( "Hi_Treshold",          "DEMO.Canny",          aCanny_HiTreshold,                      255, nothing_asCallback )

    cv2.createTrackbar( "dp",                   "DEMO.Canny.Circles",  aHough_dp,                              255, nothing_asCallback )
    cv2.createTrackbar( "minDistance",          "DEMO.Canny.Circles",  aHough_minDistance,                     255, nothing_asCallback )
    cv2.createTrackbar( "param1_HiTreshold",    "DEMO.Canny.Circles",  aHough_param1_aCannyHiTreshold,         255, nothing_asCallback )
    cv2.createTrackbar( "param2_CentreDetect",  "DEMO.Canny.Circles",  aHough_param2_aCentreDetectTreshold,    255, nothing_asCallback )
    cv2.createTrackbar( "minRadius",            "DEMO.Canny.Circles",  aHough_minRadius,                       255, nothing_asCallback )
    cv2.createTrackbar( "maxRadius",            "DEMO.Canny.Circles",  aHough_maxRadius,                       255, nothing_asCallback )

    cv2.imshow( "DEMO.IN",          demo )                              # static ...
    # --------------------------------------------------------------------------------GUI-mainloop()
    print " --------------------------------------------------------------------------- press [ESC] to exit "
    while( True ):
        # --------------------------------------------------------------------------------GUI-[ESCAPE]?
        if aKeyPRESSED == 27:
            break
        # --------------------------------------------------------------------------------<vars>-DETECT-delta(s)
        aCanny_LoTreshold = cv2.getTrackbarPos( "Lo_Treshold", "DEMO.Canny" )
        aCanny_HiTreshold = cv2.getTrackbarPos( "Hi_Treshold", "DEMO.Canny" )

        if (    aCanny_LoTreshold      != aCanny_LoTreshold_PREVIOUS
            or  aCanny_HiTreshold      != aCanny_HiTreshold_PREVIOUS
            ):
            # --------------------------= FLAG
            aCannyRefreshFLAG           = True
            # --------------------------= RE-SYNC
            aCanny_LoTreshold_PREVIOUS  = aCanny_LoTreshold
            aCanny_HiTreshold_PREVIOUS  = aCanny_HiTreshold
        else:
            # --------------------------= Un-FLAG
            aCannyRefreshFLAG           = False

        aHough_dp                           = cv2.getTrackbarPos( "dp",                 "DEMO.Canny.Circles" )
        aHough_minDistance                  = cv2.getTrackbarPos( "minDistance",        "DEMO.Canny.Circles" )
        aHough_param1_aCannyHiTreshold      = cv2.getTrackbarPos( "param1_HiTreshold",  "DEMO.Canny.Circles" )
        aHough_param2_aCentreDetectTreshold = cv2.getTrackbarPos( "param2_CentreDetect","DEMO.Canny.Circles" )
        aHough_minRadius                    = cv2.getTrackbarPos( "minRadius",          "DEMO.Canny.Circles" )
        aHough_maxRadius                    = cv2.getTrackbarPos( "maxRadius",          "DEMO.Canny.Circles" )

        if (    aHough_dp                            != aHough_dp_PREVIOUS
            or  aHough_minDistance                   != aHough_minDistance_PREVIOUS
            or  aHough_param1_aCannyHiTreshold       != aHough_param1_aCannyHiTreshold_PREVIOUS
            or  aHough_param2_aCentreDetectTreshold  != aHough_param2_aCentreDetectTreshold_PREVIOUS    
            or  aHough_minRadius                     != aHough_minRadius_PREVIOUS
            or  aHough_maxRadius                     != aHough_maxRadius_PREVIOUS
            ):
            # --------------------------= FLAG
            aHoughRefreshFLAG           = True                  
            # ----------------------------------------------= RE-SYNC
            aHough_dp_PREVIOUS                              =  aHough_dp                          
            aHough_minDistance_PREVIOUS                     =  aHough_minDistance                 
            aHough_param1_aCannyHiTreshold_PREVIOUS         =  aHough_param1_aCannyHiTreshold     
            aHough_param2_aCentreDetectTreshold_PREVIOUS    =  aHough_param2_aCentreDetectTreshold
            aHough_minRadius_PREVIOUS                       =  aHough_minRadius                   
            aHough_maxRadius_PREVIOUS                       =  aHough_maxRadius                   
        else:
            # --------------------------= Un-FLAG
            aHoughRefreshFLAG           = False
        # --------------------------------------------------------------------------------REFRESH-process-pipe-line ( with recent <state> <vars> )
        if ( aCannyRefreshFLAG ):

            edges   = cv2.Canny(        demo,   aCanny_LoTreshold,
                                                aCanny_HiTreshold
                                        )
            # --------------------------------------------------------------------------------GUI-SHOW-Canny()-<edges>-onRefreshFLAG
            cv2.imshow( "DEMO.Canny",   edges )
            pass

        if ( aCannyRefreshFLAG or aHoughRefreshFLAG ):

            circles = cv2.HoughCircles( edges,  cv2.cv.CV_HOUGH_GRADIENT,
                                                aHough_dp,
                                                aHough_minDistance,
                                                param1      = aHough_param1_aCannyHiTreshold,
                                                param2      = aHough_param2_aCentreDetectTreshold,
                                                minRadius   = aHough_minRadius,
                                                maxRadius   = aHough_maxRadius
                                        )
            # --------------------------------------------------------------------------------GUI-SHOW-HoughCircles()-<edges>-onRefreshFLAG
            demoWithCircles = cv2.cvtColor( demo,            cv2.COLOR_BGR2RGB )                          # .re-init <<< src
            demoWithCircles = cv2.cvtColor( demoWithCircles, cv2.COLOR_RGB2BGR )

            for aCircle in circles[0]:
                cv2.circle( demoWithCircles,    ( int( aCircle[0] ), int( aCircle[1] ) ),
                                                aCircle[2],
                                                (0,255,0),
                                                1
                            )
                pass
            pass
            cv2.imshow( "DEMO.Canny.Circles", demoWithCircles )
        pass        
        # --------------------------------------------------------------------------------<vars>-UPDATE-<state>
        # ref. above in .onRefreshFLAG RE-SYNC sections
        # --------------------------------------------------------------------------------GUI-INPUT ? [ESCAPE]
        aKeyPRESSED = cv2.waitKey(1) & 0xFF
    pass
    # --------------------------------------------------------------------------------GUI-<window>-s / DESTROY
    cv2.destroyWindow( "DEMO.IN" )
    cv2.destroyWindow( "DEMO.Canny" )
    cv2.destroyWindow( "DEMO.Canny.Circles" )
    # --------------------------------------------------------------------------------GUI-<window>-s
    pass

def main():
    GUI_openCV_circles()
    return 0

if __name__ == '__main__':
    main()

【讨论】:

我会接受这个答案,只是因为那句话——也因为它是唯一的答案,当我复制和粘贴这段代码时可能会告诉我 dp 是什么。 @PGT :o) 不错——看过一次,读过上百次OpenCV RefMan 说:dp – 累加器分辨率与图像分辨率的反比。例如,如果 dp=1 ,则累加器与输入图像具有相同的分辨率。如果 dp=2 ,累加器的宽度和高度只有一半。 @user3666197 任何你知道的关于累加器的解释/细节的来源?

以上是关于opencv库中houghcircle函数中的dp参数究竟是如何工作的?的主要内容,如果未能解决你的问题,请参考以下文章

#私藏项目实操分享#教你用OpenCV 和 Python实现圆物检测《-》HoughCircles

Python,OpenCV中的霍夫圆变换——cv2.HoughCircles()

HoughCircles 在 OpenCV 中无法正确检测圆

OpenCV-霍夫圆变换cv::HoughCircles

OpenCV-霍夫圆变换cv::HoughCircles

从 onCameraFrame、OpenCV、Android/Java 调用 HoughCircles() 方法时改变慢帧速率