Python 使用卡尔曼滤波器来改进模拟但得到更差的结果

Posted

技术标签:

【中文标题】Python 使用卡尔曼滤波器来改进模拟但得到更差的结果【英文标题】:Python using Kalman Filter to improve simulation but getting worse results 【发布时间】:2013-10-18 02:58:35 【问题描述】:

我对将卡尔曼滤波器 (KF) 应用于以下预测问题时所看到的行为有疑问。我已经包含了一个简单的代码示例。

目标:我想知道 KF 是否适合使用现在(在 t 时)获得的测量结果来改进前一天(在 t+24 小时)的预测/模拟结果。目标是使预测尽可能接近测量值

假设: 我们假设测量结果是完美的(即,如果我们能得到与测量结果完美匹配的预测,我们很高兴)。

我们有一个测量变量(z,真实风速)和一个模拟变量(x,预测风速)。

模拟的风速 x 是由 NWP(数值天气预报)软件使用各种气象数据(对我来说是黑盒子)生成的。模拟文件每天生成,每半小时包含一次数据。

我尝试使用我现在获得的测量值和现在的预测数据(在 t-24 小时前生成)使用标量卡尔曼滤波器来校正 t+24 小时的预测。作为参考,我使用了: http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html

代码:

#! /usr/bin/python

import numpy as np
import pylab

import os


def main():

    # x = 336 data points of simulated wind speed for 7 days * 24 hour * 2 (every half an hour)
    # Imagine at time t, we will get a x_t fvalue or t+48 or a 24 hours later.
    x = load_x()

    # this is a list that will contain 336 data points of our corrected data
    x_sample_predict_list = []

    # z = 336 data points for 7 days * 24 hour * 2 of actual measured wind speed (every half an hour)
    z = load_z()

    # Here is the setup of the scalar kalman filter
    # reference: http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html
    # state transition matrix (we simply have a scalar)
    # what you need to multiply the last time's state to get the newest state
    # we get the x_t+1 = A * x_t, since we get the x_t+1 directly for simulation
    # we will have a = 1
    a = 1.0

    # observation matrix
    # what you need to multiply to the state, convert it to the same form as incoming measurement 
    # both state and measurements are wind speed, so set h = 1
    h = 1.0

    Q = 16.0    # expected process variance of predicted Wind Speed
    R = 9.0 # expected measurement variance of Wind Speed

    p_j = Q # process covariance is equal to the initial process covariance estimate

    # Kalman gain is equal to k = hp-_j / (hp-_j + R).  With perfect measurement
    # R = 0, k reduces to k=1/h which is 1
    k = 1.0

    # one week data
    # original R2 = 0.183
    # with delay = 6, R2 = 0.295
    # with delay = 12, R2 = 0.147   
    # with delay = 48, R2 = 0.075
    delay = 6 

    # Kalman loop
    for t, x_sample in enumerate(x):

        if t <= delay:          
            # for the first day of the forecast,
            # we don't have forecast data and measurement 
            # from a day before to do correction
            x_sample_predict = x_sample             
        else: # t > 48
            # for a priori estimate we take x_sample as is
            # x_sample = x^-_j = a x^-_j_1 + b u_j
            # Inside the NWP (numerical weather prediction, 
            # the x_sample should be on x_sample_j-1 (assumption)

            x_sample_predict_prior = a * x_sample

            # we use the measurement from t-delay (ie. could be a day ago)
            # and forecast data from t-delay, to produce a leading residual that can be used to
            # correct the forecast.
            residual = z[t-delay] - h * x_sample_predict_list[t-delay]


            p_j_prior = a**2 * p_j + Q

            k = h * p_j_prior / (h**2 * p_j_prior + R)

            # we update our prediction based on the residual
            x_sample_predict = x_sample_predict_prior + k * residual

            p_j = p_j_prior * (1 - h * k)

            #print k
            #print p_j_prior
            #print p_j
            #raw_input()

        x_sample_predict_list.append(x_sample_predict)

    # initial goodness of fit
    R2_val_initial = calculate_regression(x,z)
    R2_string_initial = "R2 initial: 0:10.3f, ".format(R2_val_initial)    
    print R2_string_initial     # R2_val_initial = 0.183

    # final goodness of fit
    R2_val_final = calculate_regression(x_sample_predict_list,z)
    R2_string_final = "R2 final: 0:10.3f, ".format(R2_val_final)  
    print R2_string_final       # R2_val_final = 0.117, which is worse


    timesteps = xrange(len(x))      
    pylab.plot(timesteps,x,'r-', timesteps,z,'b:', timesteps,x_sample_predict_list,'g--')
    pylab.xlabel('Time')
    pylab.ylabel('Wind Speed')
    pylab.title('Simulated Wind Speed vs Actual Wind Speed')
    pylab.legend(('predicted','measured','kalman'))
    pylab.show()


def calculate_regression(x, y):         
    R2 = 0  
    A = np.array( [x, np.ones(len(x))] )
    model, resid = np.linalg.lstsq(A.T, y)[:2]  
    R2_val = 1 - resid[0] / (y.size * y.var())          
    return R2_val

def load_x():
    return np.array([2, 3, 3, 5, 4, 4, 4, 5, 5, 6, 5, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11,
     11, 10, 8, 8, 8, 8, 6, 3, 4, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 6, 7, 6, 8, 9, 10,
     12, 11, 10, 10, 10, 11, 11, 10, 8, 8, 9, 8, 9, 9, 9, 9, 8, 9, 8, 11, 11, 11, 12,
     12, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 13, 13, 12, 12, 13, 13, 12, 12, 
     11, 12, 12, 19, 18, 17, 15, 13, 14, 14, 14, 13, 12, 12, 12, 12, 11, 10, 10, 10, 
     10, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 8, 8, 8, 6, 5, 5, 
     5, 5, 5, 5, 6, 4, 4, 4, 6, 7, 8, 7, 7, 9, 10, 10, 9, 9, 8, 7, 5, 5, 5, 5, 5, 5, 
     5, 5, 6, 5, 5, 5, 4, 4, 6, 6, 7, 7, 7, 7, 6, 6, 5, 5, 4, 2, 2, 2, 1, 1, 1, 2, 3,
     13, 13, 12, 11, 10, 9, 10, 10, 8, 9, 8, 7, 5, 3, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6,
     7, 7, 7, 6, 6, 6, 7, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 1, 5, 5, 3, 2, 1, 2, 6, 7, 
     7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 
     7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 2, 2,
     2, 3, 1, 1, 3, 4, 5, 8, 9, 9, 9, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7,
     7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 5, 5, 5, 5, 6, 5])

def load_z():
    return np.array([3, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 2,
     2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6,
     6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 10, 10, 9,
     9, 10, 9, 9, 10, 9, 8, 9, 9, 7, 7, 6, 7, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 7, 6, 7,
     8, 8, 7, 8, 9, 9, 9, 9, 10, 9, 9, 9, 8, 8, 10, 9, 10, 10, 9, 9, 9, 10, 9, 8, 7, 
     7, 7, 7, 8, 7, 6, 5, 4, 3, 5, 3, 5, 4, 4, 4, 2, 4, 3, 2, 1, 1, 2, 1, 2, 1, 4, 4,
     4, 4, 4, 3, 3, 3, 1, 1, 1, 1, 2, 3, 3, 2, 3, 3, 3, 2, 2, 5, 4, 2, 5, 4, 1, 1, 1, 
     1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4,
     4, 4, 5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 3, 3, 1, 2, 1, 1, 2, 4, 3, 1,
     1, 2, 0, 0, 0, 2, 1, 0, 0, 2, 3, 2, 4, 4, 3, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 5, 
     4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 6, 5, 5, 8, 9, 8, 9,
     9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10, 9, 8, 8, 9, 8, 9, 9, 10, 9, 9, 9,
     7, 7, 9, 8, 7, 6, 6, 5, 5, 5, 5, 3, 3, 3, 4, 6, 5, 5, 6, 5])

if __name__ == '__main__': main()  # this avoids executing main on import your_module

----------

观察:

1) 如果昨天的预测过度预测(正偏差),那么今天,我会通过减去偏差来进行修正。在实践中,如果今天我碰巧预测不足,那么减去正偏差会导致更糟糕的预测。我实际上观察到更广泛的数据波动,整体拟合较差。我的例子有什么问题?

2) 大多数卡尔曼滤波器资源表明卡尔曼滤波器最小化后验协方差 p_j = E(x_j – x^_j),并且有证明选择 K 来最小化 p_j。但是有人可以解释最小化后验协方差实际上如何最小化过程白噪声 w 的影响吗?在实时情况下,假设实际风速和测量风速为 5 m/s。预测风速为 6 m/s,即。有一个 w = 1 m/s 的噪音。残差为 5 – 6 = -1 m/s。您通过从您的预测中取 1 m/s 来纠正 5 m/s。是如何将过程噪声的影响降到最低的?

3) 这里有一篇论文提到将 KF 应用于平滑天气预报。 http://hal.archives-ouvertes.fr/docs/00/50/59/93/PDF/Louka_etal_jweia2008.pdf。有趣的一点是在第 9 页 eq (7) 中,“一旦新的观测值 y_t 已知,在时间 t 的 x 估计值变为 x_t = x_t/t-1 = K(y_t – H_t * x_t/t- 1)”。如果我要根据实际时间来解释它,那么“一旦现在知道新的观察值,现在的估计就变成了 x_t ...。 ” 我了解 KF 如何让您的数据实时接近测量值。但是,如果您要修正 t=now 的预测数据,使用 t=now 的测量数据,那又是怎样的预测?

谢谢!

更新1:

4) 如果我们希望卡尔曼处理数据与测量数据时间序列之间的 R2 从未处理的数据与测量数据。在此示例中,如果测量用于改进预测 6 时间步(从现在起 3 小时),它仍然有用(R2 从 0.183 变为 0.295)。但是,如果使用测量来改进 1 天后的预测,那么它会破坏相关性(R2 下降到 0.075)。

【问题讨论】:

这不是一个解决方案,所以我把它写成评论:时间序列分析可以在Matlab或R中非常容易地完成。Python在这方面可能没有他们那么发达。作为证据,在 Matlab 和 Python 中有一个用于 KF 的包: Matlab - mathworks.com/help/control/ug/kalman-filtering.html R - stat.ethz.ch/R-manual/R-patched/library/stats/html/… 如果你真的想用python,试试:github.com/pykalman/pykalman或arxiv.org/ftp/arxiv/papers/1204/1204.0375.pdf @Mai。谢谢 Mai,我已经尝试了卡尔曼滤波器库的其他实现,例如 greg.czerniak.info/guides/kalman1 中的代码。但它是对修正预测数据问题的应用,这让我很难过,我的简化代码是对概念问题的说明。我有一个更复杂的例子,它使用上面链接中的完整卡尔曼滤波器类,相同的输入数据(但状态向量是预测风速的三次多项式),但我也会看到拟合优度下降修正后的数据。 我不是过滤过程的专家,所以我不会尝试解释观察2和3。但我有一些数学和物理知识。天气数据在概念上是连续的,但在采样上是离散的。如果我们说 T = f(x),其中 x 是参数向量,并且 f(x) 在局部意义上应该是非确定性的。换句话说,T 是一个概率密度函数。您对高估(或低估)偏差的假设将持续一天(或任何时间尺度)可能不成立。至少如果应用白噪声,假设不应该成立(对我来说似乎是这样)。 【参考方案1】:

我更新了我的测试标量实现,没有假设完美测量 R 为 1,这就是将卡尔曼增益降低到恒定值 1 的原因。现在我看到时间序列的改进与减少的 RMSE 误差。

#! /usr/bin/python

import numpy as np
import pylab

import os

# RMSE improved
def main():

    # x = 336 data points of simulated wind speed for 7 days * 24 hour * 2 (every half an hour)
    # Imagine at time t, we will get a x_t fvalue or t+48 or a 24 hours later.
    x = load_x()

    # this is a list that will contain 336 data points of our corrected data
    x_sample_predict_list = []

    # z = 336 data points for 7 days * 24 hour * 2 of actual measured wind speed (every half an hour)
    z = load_z()

    # Here is the setup of the scalar kalman filter
    # reference: http://www.swarthmore.edu/NatSci/echeeve1/Ref/Kalman/ScalarKalman.html
    # state transition matrix (we simply have a scalar)
    # what you need to multiply the last time's state to get the newest state
    # we get the x_t+1 = A * x_t, since we get the x_t+1 directly for simulation
    # we will have a = 1
    a = 1.0

    # observation matrix
    # what you need to multiply to the state, convert it to the same form as incoming measurement 
    # both state and measurements are wind speed, so set h = 1
    h = 1.0

    Q = 1.0     # expected process noise of predicted Wind Speed    
    R = 1.0     # expected measurement noise of Wind Speed

    p_j = Q # process covariance is equal to the initial process covariance estimate

    # Kalman gain is equal to k = hp-_j / (hp-_j + R).  With perfect measurement
    # R = 0, k reduces to k=1/h which is 1
    k = 1.0

    # one week data
    # original R2 = 0.183
    # with delay = 6, R2 = 0.295
    # with delay = 12, R2 = 0.147   
    # with delay = 48, R2 = 0.075
    delay = 6 

    # Kalman loop
    for t, x_sample in enumerate(x):

        if t <= delay:          
            # for the first day of the forecast,
            # we don't have forecast data and measurement 
            # from a day before to do correction
            x_sample_predict = x_sample             
        else: # t > 48
            # for a priori estimate we take x_sample as is
            # x_sample = x^-_j = a x^-_j_1 + b u_j
            # Inside the NWP (numerical weather prediction, 
            # the x_sample should be on x_sample_j-1 (assumption)

            x_sample_predict_prior = a * x_sample

            # we use the measurement from t-delay (ie. could be a day ago)
            # and forecast data from t-delay, to produce a leading residual that can be used to
            # correct the forecast.
            residual = z[t-delay] - h * x_sample_predict_list[t-delay]

            p_j_prior = a**2 * p_j + Q

            k = h * p_j_prior / (h**2 * p_j_prior + R)

            # we update our prediction based on the residual
            x_sample_predict = x_sample_predict_prior + k * residual

            p_j = p_j_prior * (1 - h * k)

            #print k
            #print p_j_prior
            #print p_j
            #raw_input()

        x_sample_predict_list.append(x_sample_predict)

    # initial goodness of fit
    R2_val_initial = calculate_regression(x,z)
    R2_string_initial = "R2 original: 0:10.3f, ".format(R2_val_initial)   
    print R2_string_initial     # R2_val_original = 0.183

    original_RMSE = (((x-z)**2).mean())**0.5
    print "original_RMSE"
    print original_RMSE 
    print "\n"

    # final goodness of fit
    R2_val_final = calculate_regression(x_sample_predict_list,z)
    R2_string_final = "R2 final: 0:10.3f, ".format(R2_val_final)  
    print R2_string_final       # R2_val_final = 0.267, which is better

    final_RMSE = (((x_sample_predict-z)**2).mean())**0.5
    print "final_RMSE"
    print final_RMSE    
    print "\n"


    timesteps = xrange(len(x))      
    pylab.plot(timesteps,x,'r-', timesteps,z,'b:', timesteps,x_sample_predict_list,'g--')
    pylab.xlabel('Time')
    pylab.ylabel('Wind Speed')
    pylab.title('Simulated Wind Speed vs Actual Wind Speed')
    pylab.legend(('predicted','measured','kalman'))
    pylab.show()


def calculate_regression(x, y):         
    R2 = 0  
    A = np.array( [x, np.ones(len(x))] )
    model, resid = np.linalg.lstsq(A.T, y)[:2]  
    R2_val = 1 - resid[0] / (y.size * y.var())          
    return R2_val

def load_x():
    return np.array([2, 3, 3, 5, 4, 4, 4, 5, 5, 6, 5, 7, 7, 7, 8, 8, 8, 9, 9, 10, 10, 10, 11, 11,
     11, 10, 8, 8, 8, 8, 6, 3, 4, 5, 5, 5, 6, 5, 5, 5, 6, 5, 5, 6, 6, 7, 6, 8, 9, 10,
     12, 11, 10, 10, 10, 11, 11, 10, 8, 8, 9, 8, 9, 9, 9, 9, 8, 9, 8, 11, 11, 11, 12,
     12, 13, 13, 13, 13, 13, 13, 13, 14, 13, 13, 12, 13, 13, 12, 12, 13, 13, 12, 12, 
     11, 12, 12, 19, 18, 17, 15, 13, 14, 14, 14, 13, 12, 12, 12, 12, 11, 10, 10, 10, 
     10, 9, 9, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 7, 7, 8, 8, 8, 6, 5, 5, 
     5, 5, 5, 5, 6, 4, 4, 4, 6, 7, 8, 7, 7, 9, 10, 10, 9, 9, 8, 7, 5, 5, 5, 5, 5, 5, 
     5, 5, 6, 5, 5, 5, 4, 4, 6, 6, 7, 7, 7, 7, 6, 6, 5, 5, 4, 2, 2, 2, 1, 1, 1, 2, 3,
     13, 13, 12, 11, 10, 9, 10, 10, 8, 9, 8, 7, 5, 3, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6,
     7, 7, 7, 6, 6, 6, 7, 6, 6, 5, 4, 4, 3, 3, 3, 2, 2, 1, 5, 5, 3, 2, 1, 2, 6, 7, 
     7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 9, 9, 9, 9, 9, 8, 8, 8, 8, 7, 7, 
     7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 11, 11, 11, 11, 10, 10, 9, 10, 10, 10, 2, 2,
     2, 3, 1, 1, 3, 4, 5, 8, 9, 9, 9, 9, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7,
     7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 7, 5, 5, 5, 5, 5, 6, 5])

def load_z():
    return np.array([3, 2, 1, 1, 1, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2, 2,
     2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 4, 4, 5, 5, 5, 6, 6,
     6, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 9, 10, 9, 9, 10, 10, 9,
     9, 10, 9, 9, 10, 9, 8, 9, 9, 7, 7, 6, 7, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 7, 6, 7,
     8, 8, 7, 8, 9, 9, 9, 9, 10, 9, 9, 9, 8, 8, 10, 9, 10, 10, 9, 9, 9, 10, 9, 8, 7, 
     7, 7, 7, 8, 7, 6, 5, 4, 3, 5, 3, 5, 4, 4, 4, 2, 4, 3, 2, 1, 1, 2, 1, 2, 1, 4, 4,
     4, 4, 4, 3, 3, 3, 1, 1, 1, 1, 2, 3, 3, 2, 3, 3, 3, 2, 2, 5, 4, 2, 5, 4, 1, 1, 1, 
     1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 4, 3, 3, 4, 4, 4, 4,
     4, 4, 5, 5, 5, 4, 3, 3, 3, 3, 3, 3, 3, 3, 1, 2, 2, 3, 3, 1, 2, 1, 1, 2, 4, 3, 1,
     1, 2, 0, 0, 0, 2, 1, 0, 0, 2, 3, 2, 4, 4, 3, 3, 4, 5, 5, 5, 4, 5, 4, 4, 4, 5, 5, 
     4, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 6, 5, 5, 8, 9, 8, 9,
     9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 9, 10, 9, 8, 8, 9, 8, 9, 9, 10, 9, 9, 9,
     7, 7, 9, 8, 7, 6, 6, 5, 5, 5, 5, 3, 3, 3, 4, 6, 5, 5, 6, 5])

if __name__ == '__main__': main()  # this avoids executing main on import your_module

【讨论】:

【参考方案2】:

此行不尊重Scalar Kalman Filter:

residual = z[t-delay] - h * x_sample_predict_list[t-delay]

在我看来你应该这样做:

 residual = z[t -delay] - h * x_sample_predict_prior

【讨论】:

以上是关于Python 使用卡尔曼滤波器来改进模拟但得到更差的结果的主要内容,如果未能解决你的问题,请参考以下文章

翻译: 构建基于卡尔曼滤波器的 IMU 用速度数据改进 IMU 姿态估计

适用于 iOS 的卡尔曼滤波器

如何使用 R 中的 DSE 包模拟卡尔曼滤波器的后验滤波估计

自动驾驶 9-4: 改进的 EKF - 错误状态扩展卡尔曼滤波器 An Improved EKF - The Error State Extended Kalman Filter

自动驾驶 9-4: 改进的 EKF - 错误状态扩展卡尔曼滤波器 An Improved EKF - The Error State Extended Kalman Filter

OpenCV 中卡尔曼滤波器的参数