快速排列 -> 数字 -> 排列映射算法

Posted

技术标签:

【中文标题】快速排列 -> 数字 -> 排列映射算法【英文标题】:Fast permutation -> number -> permutation mapping algorithms 【发布时间】:2010-12-03 03:03:26 【问题描述】:

我有 n 个元素。举个例子,假设有 7 个元素,1234567。我知道有 7 个! = 这 7 个元素可能有 5040 种排列。

我想要一个包含两个函数的快速算法:

f(number) 将 0 到 5039 之间的数字映射到唯一的排列,并且

f'(permutation) 将排列映射回生成它的数字。

我不关心数字和排列之间的对应关系,只要每个排列都有自己唯一的数字。

所以,例如,我可能有函数

f(0) = '1234567'
f'('1234567') = 0

想到的最快算法是枚举所有排列并在两个方向上创建一个查找表,这样,一旦创建表,f(0) 将是 O(1) 和 f('1234567')将是对字符串的查找。但是,这会占用大量内存,尤其是当 n 变大时。

谁能提出另一种可以快速运行且没有内存缺点的算法?

【问题讨论】:

虽然下面的算法很全面,但你正确指出最快的算法是查找表。您真的不是在谈论“那么多”内存,尽管这当然取决于您的系统和平台。但是,如果查找表就足够了,并且如果这是一个真实世界的应用程序,那就使用它。快速简单! 你这么说,但 n 不一定要变得非常大才会很傻。对于 12 个元素,12 个!是 479,001,600 个排列。这是一个很大的查找表! 不要被不同的帖子混淆,使用 n 表示不同的含义。有些 n 代表字符串长度,有些 n 代表可能排列的计数。不要盲目比较大 O 的概念。 -- 迟到者请注意 -- -- 【参考方案1】:

要描述 n 个元素的排列,您会看到对于第一个元素结束的位置,您有 n 个可能性,因此您可以用 0 到 n-1 之间的数字来描述它。对于下一个元素结束的位置,您有 n-1 个剩余可能性,因此您可以用 0 到 n-2 之间的数字来描述它。 等等,直到你有 n 个数字。

以 n = 5 为例,考虑将abcde 带到caebd 的排列。

a,第一个元素,在第二个位置结束,所以我们为其分配索引1b 最终位于第四个位置,即索引 3,但它是剩下的第三个,因此我们将其分配为 2c 最终位于第一个剩余位置,始终为 0d 结束于最后一个剩余位置,(仅剩下的两个位置中)是 1e 结束于唯一剩余的位置,索引为 0

所以我们有索引序列1, 2, 0, 1, 0

现在您知道,例如在二进制数中,“xyz”表示 z + 2y + 4x。对于十进制数, 它是 z + 10y + 100x。每个数字乘以某个权重,然后将结果相加。权重中明显的模式当然是权重是 w = b^k,其中 b 是数字的基数,k 是数字的索引。 (我总是从最右边开始计算数字,从索引 0 开始计算最右边的数字。同样,当我谈到“第一个”数字时,我指的是最右边的数字。)

数字的权重遵循这种模式的原因是,从 0 到 k 的数字可以表示的最大数字必须恰好比可以表示的最小数字低 1仅使用数字 k+1。在二进制中,0111 必须比 1000 小 1。在十进制中,099999 必须比 100000 小 1。

编码为可变基数 后续数字之间的间距恰好为 1 是重要规则。意识到这一点,我们可以用一个可变基数来表示我们的索引序列。每个数字的基数是该数字的不同可能性的数量。对于十进制,每个数字都有 10 种可能性,对于我们的系统,最右边的数字有 1 种可能性,最左边的数字有 n 种可能性。但由于最右边的数字(我们序列中的最后一个数字)始终为 0,因此我们将其省略。这意味着我们剩下以 2 到 n 为基数。一般来说,第 k 个数字的底数为 b[k] = k + 2。数字 k 允许的最大值是 h[k] = b[k] - 1 = k + 1。

我们关于数字权重 w[k] 的规则要求 h[i] * w[i] 的总和,其中 i 从 i = 0 到 i = k,等于 1 * w[k+ 1]。反复声明,w[k+1] = w[k] + h[k] * w[k] = w[k]*(h[k] + 1)。第一个权重 w[0] 应该始终为 1。从那里开始,我们有以下值:

k    h[k] w[k]    

0    1    1  
1    2    2    
2    3    6    
3    4    24   
...  ...  ...
n-1  n    n!  

(一般关系 w[k-1] = k! 很容易通过归纳证明。)

我们通过转换序列得到的数字将是 s[k] * w[k] 的总和,其中 k 从 0 到 n-1。这里 s[k] 是序列的第 k 个(最右边,从 0 开始)元素。以我们的 1, 2, 0, 1, 0 为例,最右边的元素如前所述被剥离:1, 2, 0, 1。我们的总和是 1 * 1 + 0 * 2 + 2 * 6 + 1 * 24 = 37

请注意,如果我们为每个索引取最大位置,我们将得到 4, 3, 2, 1, 0,然后转换为 119。由于我们选择了数字编码中的权重,因此我们不会'不要跳过任何数字,所有数字 0 到 119 都有效。其中正好有 120 个,即 n!对于我们示例中的 n = 5,恰好是不同排列的数量。所以你可以看到我们的编码数字完全指定了所有可能的排列。

从变量库解码 解码类似于转换为二进制或十进制。常用算法是这样的:

int number = 42;
int base = 2;
int[] bits = new int[n];

for (int k = 0; k < bits.Length; k++)

    bits[k] = number % base;
    number = number / base;

对于我们的可变基数:

int n = 5;
int number = 37;

int[] sequence = new int[n - 1];
int base = 2;

for (int k = 0; k < sequence.Length; k++)

    sequence[k] = number % base;
    number = number / base;

    base++; // b[k+1] = b[k] + 1

这会将我们的 37 正确解码为 1, 2, 0, 1(在此代码示例中,sequence 将是 1, 0, 2, 1,但无论如何...只要您正确索引)。我们只需要在右端添加 0(请记住,最后一个元素的新位置总是只有一种可能性)来恢复我们的原始序列 1,2,0,1,0。

使用索引序列排列列表 您可以使用以下算法根据特定的索引序列排列列表。不幸的是,这是一个 O(n²) 算法。

int n = 5;
int[] sequence = new int[]  1, 2, 0, 1, 0 ;
char[] list = new char[]  'a', 'b', 'c', 'd', 'e' ;
char[] permuted = new char[n];
bool[] set = new bool[n];

for (int i = 0; i < n; i++)

    int s = sequence[i];
    int remainingPosition = 0;
    int index;

    // Find the s'th position in the permuted list that has not been set yet.
    for (index = 0; index < n; index++)
    
        if (!set[index])
        
            if (remainingPosition == s)
                break;

            remainingPosition++;
        
    

    permuted[index] = list[i];
    set[index] = true;

排列的常见表示 通常,您不会像我们所做的那样不直观地表示排列,而只是通过应用排列后每个元素的绝对位置来表示。对于abcdecaebd,我们的示例 1, 2, 0, 1, 0 通常由 1, 3, 0, 4, 2 表示。从 0 到 4(或通常为 0 到 n-1)的每个索引在此表示中只出现一次。

以这种形式应用排列很容易:

int[] permutation = new int[]  1, 3, 0, 4, 2 ;

char[] list = new char[]  'a', 'b', 'c', 'd', 'e' ;
char[] permuted = new char[n];

for (int i = 0; i < n; i++)

    permuted[permutation[i]] = list[i];

反转它非常相似:

for (int i = 0; i < n; i++)

    list[i] = permuted[permutation[i]];

从我们的表示转换为通用表示 请注意,如果我们使用我们的算法使用索引序列排列列表,并将其应用于恒等排列 0, 1, 2, ..., n-1,我们将得到 inverse排列,以常见的形式表示。 (在我们的示例中为 2, 0, 4, 1, 3)。

为了得到不倒置的前置换,我们应用我刚刚展示的置换算法:

int[] identity = new int[]  0, 1, 2, 3, 4 ;
int[] inverted =  2, 0, 4, 1, 3 ;
int[] normal = new int[n];

for (int i = 0; i < n; i++)

    normal[identity[i]] = list[i];

或者你可以直接应用排列,通过使用逆排列算法:

char[] list = new char[]  'a', 'b', 'c', 'd', 'e' ;
char[] permuted = new char[n];

int[] inverted =  2, 0, 4, 1, 3 ;

for (int i = 0; i < n; i++)

    permuted[i] = list[inverted[i]];

请注意,所有处理普通形式排列的算法都是 O(n),而以我们的形式应用排列是 O(n²)。如果您需要多次应用排列,请先将其转换为通用表示。

【讨论】:

在“使用索引序列排列列表”中,您提到了二次算法。这当然很好,因为 n 可能会非常小。不过,这可以通过订单统计树(pine.cs.yale.edu/pinewiki/OrderStatisticsTree)“轻松”减少到 O(nlogn),即最初将包含值 0、1、2、...、n-1 的红黑树,并且每个节点都包含它下面的后代数量。有了这个,可以在 O(logn) 时间内找到/删除第 k 个元素。 这些被称为莱默码。这个链接也很好地解释了它们,keithschwarz.com/interesting/code/?dir=factoradic-permutation 这个算法很棒,但我发现有几个案例是错误的。取字符串“123”;第 4 次排列应该是 231,但根据这个算法,它会是 312。比如说 1234,第 4 次排列应该是 1342,但会被误认为是“1423”。如果我观察到错误,请纠正我。谢谢。 @IsaacLi,如果我是正确的,f(4) = 2, 0, 0 = 231。而 f'(312) = 1, 1, 0 = 3。对于@ 987654342@, f(4) = 0, 2, 0, 0 = 1342。而 f'(1423) = 0, 1 1, 0 = 3。这个算法真的很鼓舞人心。我想知道这是OP的原创作品。我研究和分析了一段时间。我相信这是正确的:) 如何将“我们的代表”转换为“共同的代表”,1, 2, 0, 1, 0 --> 1, 3, 0, 4, 2?反之亦然?可能吗? (通过 not1, 2, 0, 1, 0 C, A, E, B, D 之间转换,这需要 O(n^2)。)如果“我们的风格”和“普通风格”不可转换,它们在实际上是两个不同的独立事物,不是吗?谢谢x【参考方案2】:

我找到了一个 O(n) 算法,这里有一个简短的解释http://antoinecomeau.blogspot.ca/2014/07/mapping-between-permutations-and.html

public static int[] perm(int n, int k)

    int i, ind, m=k;
    int[] permuted = new int[n];
    int[] elems = new int[n];

    for(i=0;i<n;i++) elems[i]=i;

    for(i=0;i<n;i++)
    
            ind=m%(n-i);
            m=m/(n-i);
            permuted[i]=elems[ind];
            elems[ind]=elems[n-i-1];
    

    return permuted;


public static int inv(int[] perm)

    int i, k=0, m=1;
    int n=perm.length;
    int[] pos = new int[n];
    int[] elems = new int[n];

    for(i=0;i<n;i++) pos[i]=i; elems[i]=i;

    for(i=0;i<n-1;i++)
    
            k+=m*pos[perm[i]];
            m=m*(n-i);
            pos[elems[n-i-1]]=pos[perm[i]];
            elems[pos[perm[i]]]=elems[n-i-1];
    

    return k;

【讨论】:

如果我非常了解您的算法。您正在寻找编码的所有可能性(在这种情况下,它应该是 n! 可能性)。然后根据编码项映射数字。 我在我的博客上添加了一个简短的解释。 这非常整洁。我今天自己想出了同样的方法,但我错过了你可以在逆向中省略两个作业。 不要盲目比较大 O 的概念,因为这个答案中的 n 代表与其他一些答案不同 - 正如@user3378649 指出的那样 - 表示复杂度与字符串长度的阶乘成比例.这个答案确实效率较低。 这可以适应字典顺序吗?【参考方案3】:

复杂度可以降低到 n*log(n),见第 10.1.1 节 ("The Lehmer code (inversion table)", p.232ff) 的 fxtbook: http://www.jjj.de/fxt/#fxtbook 对于快速方法,请跳至第 10.1.1.1 节(“使用大型数组计算”第 235 页)。 (GPLed, C++) 代码在同一个网页上。

【讨论】:

【参考方案4】:

问题解决了。但是,我不确定这些年后您是否仍然需要该解决方案。大声笑,我刚加入这个网站,所以...... 检查我的 Java 排列类。您可以根据索引获取符号排列,或者给出符号排列然后获取索引。

这是我的 Premutation 类

/**
 ****************************************************************************************************************
 * Copyright 2015 Fred Pang fred@pnode.com
 ****************************************************************************************************************
 * A complete list of Permutation base on an index.
 * Algorithm is invented and implemented by Fred Pang fred@pnode.com
 * Created by Fred Pang on 18/11/2015.
 ****************************************************************************************************************
 * LOL this is my first Java project. Therefore, my code is very much like C/C++. The coding itself is not
 * very professional. but...
 *
 * This Permutation Class can be use to generate a complete list of all different permutation of a set of symbols.
 * nPr will be n!/(n-r)!
 * the user can input       n = the number of items,
 *                          r = the number of slots for the items,
 *                          provided n >= r
 *                          and a string of single character symbols
 *
 * the program will generate all possible permutation for the condition.
 *
 * Say if n = 5, r = 3, and the string is "12345", it will generate sll 60 different permutation of the set
 * of 3 character strings.
 *
 * The algorithm I used is base on a bin slot.
 * Just like a human or simply myself to generate a permutation.
 *
 * if there are 5 symbols to chose from, I'll have 5 bin slot to indicate which symbol is taken.
 *
 * Note that, once the Permutation object is initialized, or after the constructor is called, the permutation
 * table and all entries are defined, including an index.
 *
 * eg. if pass in value is 5 chose 3, and say the symbol string is "12345"
 * then all permutation table is logically defined (not physically to save memory).
 * It will be a table as follows
 *  index  output
 *      0   123
 *      1   124
 *      2   125
 *      3   132
 *      4   134
 *      5   135
 *      6   143
 *      7   145
 *      :     :
 *      58  542
 *      59  543
 *
 * all you need to do is call the "String PermGetString(int iIndex)" or the "int[] PermGetIntArray(int iIndex)"
 * function or method with an increasing iIndex, starting from 0 to getiMaxIndex() - 1. It will return the string
 * or the integer array corresponding to the index.
 *
 * Also notice that in the input string is "12345" of  position 01234, and the output is always in accenting order
 * this is how the permutation is generated.
 *
 * ***************************************************************************************************************
 * ====  W a r n i n g  ====
 * ***************************************************************************************************************
 *
 * There is very limited error checking in this class
 *
 * Especially the  int PermGetIndex(int[] iInputArray)  method
 * if the input integer array contains invalid index, it WILL crash the system
 *
 * the other is the string of symbol pass in when the object is created, not sure what will happen if the
 * string is invalid.
 * ***************************************************************************************************************
 *
 */
public class Permutation

    private boolean bGoodToGo = false;      // object status
    private boolean bNoSymbol = true;
    private BinSlot slot;                   // a bin slot of size n (input)
    private int nTotal;                     // n number for permutation
    private int rChose;                     // r position to chose
    private String sSymbol;                 // character string for symbol of each choice
    private String sOutStr;
    private int iMaxIndex;                  // maximum index allowed in the Get index function
    private int[] iOutPosition;             // output array
    private int[] iDivisorArray;            // array to do calculation

    public Permutation(int inCount, int irCount, String symbol)
    
        if (inCount >= irCount)
        
            // save all input values passed in
            this.nTotal = inCount;
            this.rChose = irCount;
            this.sSymbol = symbol;

            // some error checking
            if (inCount < irCount || irCount <= 0)
                return;                                 // do nothing will not set the bGoodToGo flag

            if (this.sSymbol.length() >= inCount)
            
                bNoSymbol = false;
            

            // allocate output storage
            this.iOutPosition = new int[this.rChose];

            // initialize the bin slot with the right size
            this.slot = new BinSlot(this.nTotal);

            // allocate and initialize divid array
            this.iDivisorArray = new int[this.rChose];

            // calculate default values base on n & r
            this.iMaxIndex = CalPremFormula(this.nTotal, this.rChose);

            int i;
            int j = this.nTotal - 1;
            int k = this.rChose - 1;

            for (i = 0; i < this.rChose; i++)
            
                this.iDivisorArray[i] = CalPremFormula(j--, k--);
            
            bGoodToGo = true;       // we are ready to go
        
    

    public String PermGetString(int iIndex)
    
        if (!this.bGoodToGo) return "Error: Object not initialized Correctly";
        if (this.bNoSymbol) return "Error: Invalid symbol string";
        if (!this.PermEvaluate(iIndex)) return "Invalid Index";

        sOutStr = "";
        // convert string back to String output
        for (int i = 0; i < this.rChose; i++)
        
            String sTempStr = this.sSymbol.substring(this.iOutPosition[i], iOutPosition[i] + 1);
            this.sOutStr = this.sOutStr.concat(sTempStr);
        
        return this.sOutStr;
    

    public int[] PermGetIntArray(int iIndex)
    
        if (!this.bGoodToGo) return null;
        if (!this.PermEvaluate(iIndex)) return null ;
        return this.iOutPosition;
    

    // given an int array, and get the index back.
    //
    //  ====== W A R N I N G ======
    //
    // there is no error check in the array that pass in
    // if any invalid value in the input array, it can cause system crash or other unexpected result
    //
    // function pass in an int array generated by the PermGetIntArray() method
    // then return the index value.
    //
    // this is the reverse of the PermGetIntArray()
    //
    public int PermGetIndex(int[] iInputArray)
    
        if (!this.bGoodToGo) return -1;
        return PermDoReverse(iInputArray);
    


    public int getiMaxIndex() 
    return iMaxIndex;


    // function to evaluate nPr = n!/(n-r)!
    public int CalPremFormula(int n, int r)
    
        int j = n;
        int k = 1;
        for (int i = 0; i < r; i++, j--)
        
            k *= j;
        
        return k;
    


//  PermEvaluate function (method) base on an index input, evaluate the correspond permuted symbol location
//  then output it to the iOutPosition array.
//
//  In the iOutPosition[], each array element corresponding to the symbol location in the input string symbol.
//  from location 0 to length of string - 1.

    private boolean PermEvaluate(int iIndex)
    
        int iCurrentIndex;
        int iCurrentRemainder;
        int iCurrentValue = iIndex;
        int iCurrentOutSlot;
        int iLoopCount;

        if (iIndex >= iMaxIndex)
            return false;

        this.slot.binReset();               // clear bin content
        iLoopCount = 0;
        do 
            // evaluate the table position
            iCurrentIndex = iCurrentValue / this.iDivisorArray[iLoopCount];
            iCurrentRemainder = iCurrentValue % this.iDivisorArray[iLoopCount];

            iCurrentOutSlot = this.slot.FindFreeBin(iCurrentIndex);     // find an available slot
            if (iCurrentOutSlot >= 0)
                this.iOutPosition[iLoopCount] = iCurrentOutSlot;
            else return false;                                          // fail to find a slot, quit now

            this.slot.setStatus(iCurrentOutSlot);                       // set the slot to be taken
            iCurrentValue = iCurrentRemainder;                          // set new value for current value.
            iLoopCount++;                                               // increase counter
         while (iLoopCount < this.rChose);

        // the output is ready in iOutPosition[]
        return true;
    

    //
    // this function is doing the reverse of the permutation
    // the input is a permutation and will find the correspond index value for that entry
    // which is doing the opposit of the PermEvaluate() method
    //
    private int PermDoReverse(int[] iInputArray)
    
        int iReturnValue = 0;
        int iLoopIndex;
        int iCurrentValue;
        int iBinLocation;

        this.slot.binReset();               // clear bin content

        for (iLoopIndex = 0; iLoopIndex < this.rChose; iLoopIndex++)
        
            iCurrentValue = iInputArray[iLoopIndex];
            iBinLocation = this.slot.BinCountFree(iCurrentValue);
            this.slot.setStatus(iCurrentValue);                          // set the slot to be taken
            iReturnValue = iReturnValue + iBinLocation * this.iDivisorArray[iLoopIndex];
        
        return iReturnValue;
    


    /*******************************************************************************************************************
     *******************************************************************************************************************
     * Created by Fred on 18/11/2015.   fred@pnode.com
     *
     * *****************************************************************************************************************
     */
    private static class BinSlot
    
        private int iBinSize;       // size of array
        private short[] eStatus;    // the status array must have length iBinSize

        private BinSlot(int iBinSize)
        
            this.iBinSize = iBinSize;               // save bin size
            this.eStatus = new short[iBinSize];     // llocate status array
        

        // reset the bin content. no symbol is in use
        private void binReset()
        
            // reset the bin's content
            for (int i = 0; i < this.iBinSize; i++) this.eStatus[i] = 0;
        

        // set the bin position as taken or the number is already used, cannot be use again.
        private void  setStatus(int iIndex)  this.eStatus[iIndex]= 1; 

        //
        // to search for the iIndex th unused symbol
        // this is important to search through the iindex th symbol
        // because this is how the table is setup. (or the remainder means)
        // note: iIndex is the remainder of the calculation
        //
        // for example:
        // in a 5 choose 3 permutation symbols "12345",
        // the index 7 item (count starting from 0) element is "1 4 3"
        // then comes the index 8, 8/12 result 0 -> 0th symbol in symbol string = '1'
        // remainder 8. then 8/3 = 2, now we need to scan the Bin and skip 2 unused bins
        //              current the bin looks 0 1 2 3 4
        //                                    x o o o o     x -> in use; o -> free only 0 is being used
        //                                      s s ^       skipped 2 bins (bin 1 and 2), we get to bin 3
        //                                                  and bin 3 is the bin needed. Thus symbol "4" is pick
        // in 8/3, there is a remainder 2 comes in this function as 2/1 = 2, now we have to pick the empty slot
        // for the new 2.
        // the bin now looks 0 1 2 3 4
        //                   x 0 0 x 0      as bin 3 was used by the last value
        //                     s s   ^      we skip 2 free bins and the next free bin is bin 4
        //                                  therefor the symbol "5" at the symbol array is pick.
        //
        // Thus, for index 8  "1 4 5" is the symbols.
        //
        //
        private int FindFreeBin(int iIndex)
        
            int j = iIndex;

            if (j < 0 || j > this.iBinSize) return -1;               // invalid index

            for (int i = 0; i < this.iBinSize; i++)
            
                if (this.eStatus[i] == 0)       // is it used
                
                    // found an empty slot
                    if (j == 0)                 // this is a free one we want?
                        return i;               // yes, found and return it.
                    else                        // we have to skip this one
                        j--;                    // else, keep looking and count the skipped one
                
            
            assert(true);           // something is wrong
            return -1;              // fail to find the bin we wanted
        

        //
        // this function is to help the PermDoReverse() to find out what is the corresponding
        // value during should be added to the index value.
        //
        // it is doing the opposite of int FindFreeBin(int iIndex) method. You need to know how this
        // FindFreeBin() works before looking into this function.
        //
        private int BinCountFree(int iIndex)
        
            int iRetVal = 0;
            for (int i = iIndex; i > 0; i--)
            
                if (this.eStatus[i-1] == 0)       // it is free
                
                    iRetVal++;
                
            
            return iRetVal;
        
    

// End of file - Permutation.java

这是我的主类,用于展示如何使用该类。

/*
 * copyright 2015 Fred Pang
 *
 * This is the main test program for testing the Permutation Class I created.
 * It can be use to demonstrate how to use the Permutation Class and its methods to generate a complete
 * list of a permutation. It also support function to get back the index value as pass in a permutation.
 *
 * As you can see my Java is not very good. :)
 * This is my 1st Java project I created. As I am a C/C++ programmer for years.
 *
 * I still have problem with the Scanner class and the System class.
 * Note that there is only very limited error checking
 *
 *
 */

import java.util.Scanner;

public class Main

    private static Scanner scanner = new Scanner(System.in);

    public static void main(String[] args)
    
        Permutation perm;       // declear the object
        String sOutString = "";
        int nCount;
        int rCount;
        int iMaxIndex;

        // Get user input
        System.out.println("Enter n: ");
        nCount = scanner.nextInt();

        System.out.println("Enter r: ");
        rCount = scanner.nextInt();

        System.out.println("Enter Symbol: ");
        sOutString = scanner.next();

        if (sOutString.length() < rCount)
        
            System.out.println("String too short, default to numbers");
            sOutString = "";
        

        // create object with user requirement
        perm = new Permutation(nCount, rCount, sOutString);

        // and print the maximum count
        iMaxIndex = perm.getiMaxIndex();
        System.out.println("Max count is:" + iMaxIndex);

        if (!sOutString.isEmpty())
        
            for (int i = 0; i < iMaxIndex; i++)
               // print out the return permutation symbol string
                System.out.println(i + " " + perm.PermGetString(i));
            
        
        else
        
            for (int i = 0; i < iMaxIndex; i++)
            
                System.out.print(i + " ->");

                // Get the permutation array
                int[] iTemp = perm.PermGetIntArray(i);

                // print out the permutation
                for (int j = 0; j < rCount; j++)
                
                    System.out.print(' ');
                    System.out.print(iTemp[j]);
                

                // to verify my PermGetIndex() works. :)
                if (perm.PermGetIndex(iTemp)== i)
                
                    System.out.println(" .");
                
                else
                   // oops something is wrong :(
                    System.out.println(" ***************** F A I L E D *************************");
                    assert(true);
                    break;
                
            
        
    

//
// End of file - Main.java

玩得开心。 :)

【讨论】:

【参考方案5】:

每个元素都可以位于七个位置之一。要描述一个元素的位置,您需要三个位。这意味着您可以将所有元素的位置存储在 32 位值中。这远非有效,因为这种表示甚至允许所有元素位于同一位置,但我相信位掩码应该相当快。

但是,如果有超过 8 个职位,您需要一些更漂亮的东西。

【讨论】:

这假设 OP 不在乎枚举是否真的从 0 变为 5039,对吧?如果没问题,那么这似乎是一个很好的解决方案。【参考方案6】:

这恰好是J中的内置函数:

   A. 1 2 3 4 5 6 7
0
   0 A. 1 2 3 4 5 6 7
1 2 3 4 5 6 7

   ?!7
5011
   5011 A. 1 2 3 4 5 6 7
7 6 4 5 1 3 2
   A. 7 6 4 5 1 3 2
5011

【讨论】:

【参考方案7】:

您可以使用递归算法对排列进行编码。如果 N 排列(数字 0,..,N-1 的某种排序)的形式为 x, ...,则将其编码为 x + N * (N-1) 的编码-在数字 0, N-1 - x 上用“...”表示的排列。听起来很拗口,这里有一些代码:

// perm[0]..perm[n-1] must contain the numbers in 0,..,n-1 in any order.
int permToNumber(int *perm, int n) 
  // base case
  if (n == 1) return 0;

  // fix up perm[1]..perm[n-1] to be a permutation on 0,..,n-2.
  for (int i = 1; i < n; i++) 
    if (perm[i] > perm[0]) perm[i]--;
  

  // recursively compute
  return perm[0] + n * permToNumber(perm + 1, n - 1);


// number must be >=0, < n!
void numberToPerm(int number, int *perm, int n) 
  if (n == 1) 
    perm[0] = 0;
    return;
  
  perm[0] = number % n;
  numberToPerm(number / n, perm + 1, n - 1);

  // fix up perm[1] .. perm[n-1]
  for (int i = 1; i < n; i++) 
    if (perm[i] >= perm[0]) perm[i]++;
  

这个算法是 O(n^2)。如果有人有 O(n) 算法,则可以加分。

【讨论】:

【参考方案8】:

多么有趣的问题!

如果您的所有元素都是数字,您可能需要考虑将它们从字符串转换为实际数字。然后,您可以通过将它们按顺序排列来对所有排列进行排序,并将它们放在一个数组中。之后,您就可以接受各种搜索算法中的任何一种了。

【讨论】:

【参考方案9】:

我之前的答案很仓促(已删除),但我确实有实际答案。它由类似的概念factoradic 提供,并且与排列有关(我的回答与组合有关,我为这种混淆道歉)。我讨厌只发布***链接,但由于某种原因,我不久前写的文章难以理解。因此,如果需要,我可以稍后再进行扩展。

【讨论】:

【参考方案10】:

有一本书是关于这个的。对不起,但我不记得它的名字(你很可能会从***找到它)。 但无论如何我写了一个枚举系统的python实现:http://kks.cabal.fi/Kombinaattori 其中一些是芬兰语,但只需复制代码和名称变量...

【讨论】:

【参考方案11】:

我有这个确切的问题,并认为我会提供我的 Python 解决方案。是 O(n^2)。

import copy

def permute(string, num):
    ''' generates a permutation '''
    def build_s(factoradic): # Build string from factoradic in list form
        string0 = copy.copy(string)
        n = []
        for i in range(len(factoradic)):
            n.append(string0[factoradic[i]])
            del string0[factoradic[i]]
        return n

    f = len(string)
    factoradic = []
    while(f != 0): # Generate factoradic number list
        factoradic.append(num % f)
        num = (num - factoradic[-1])//f
        f -= 1

    return build_s(factoradic)

s = set()
# Print 120 permutations of this string
for i in range(120):
    m = permute(list('abcde'), i)
    s.add(''.join(m))

print(len(s)) # Check that we have 120 unique permutations

这很简单;在生成数字的阶乘表示后,我只需从字符串中挑选并删除字符。从字符串中删除是为什么这是一个 O(n^2) 解决方案。

Antoine 的解决方案在性能方面更好。

【讨论】:

【参考方案12】:

一个相关的问题是计算逆排列,当只有排列数组已知时,这种排列会将排列的向量恢复到原始顺序。这是 O(n) 代码(在 php 中):

// Compute the inverse of a permutation
function GetInvPerm($Perm)
    
    $n=count($Perm);
    $InvPerm=[];
    for ($i=0; $i<$n; ++$i)
        $InvPerm[$Perm[$i]]=$i;
    return $InvPerm;
     // GetInvPerm

大卫斯佩克特 春天软件

【讨论】:

以上是关于快速排列 -> 数字 -> 排列映射算法的主要内容,如果未能解决你的问题,请参考以下文章

123能组成多少组数排列出来是啥

排列问题处理小技巧

找到一组排列,有一个约束

LeetCode:全排列46

排列组合中的大括号怎么算

一个计算排列组合的程序,算出来结果是负数,咋回事?