在遗传算法中为多个“推销员”TSP 实现交叉函数

Posted

技术标签:

【中文标题】在遗传算法中为多个“推销员”TSP 实现交叉函数【英文标题】:Implementing a crossover function for multiple "Salesmen" TSP in a genetic algorithm 【发布时间】:2021-02-06 02:07:29 【问题描述】:

我正在尝试用“多个推销员”解决 TSP 问题的变体。我有一系列 n 航点和m 无人机,我想生成一个平衡航点数量的结果在无人机之间并返回可接受的最短旅行时间。目前,我并不太担心找到最佳解决方案,我只想要在这一点上有效的东西。我已经将我的问题提炼为传统的 TSP 运行多次。我的示例是一系列航路点:

[0,1,2,3,4,5,6,7,8,9,10,11]

其中0 == 11 是起点和终点。假设我有 4 架无人机,我想生成类似的东西:

Drone A = [0,1,2,3,11]
Drone B = [0,5,6,7,11]
Drone C = [0,4,8,11]
Drone D = [0,9,10,11]

但是,我很难在我的交叉函数中生成一致的输出。我当前的函数如下所示:

DNA DNA::crossover( DNA &parentB)
 
   // sol holds the individual solution for 
   // each drone
   std::vector<std::vector<std::size_t>> sol;
   // contains the values in flattened sol 
   // used to check for duplicates
   std::vector<std::size_t> flat_sol;
  
   // returns the number of solutions 
   // required
   int number_of_paths = this→getSolution().size();
   // limits the number of waypoints required for each drone
   // subtracting 2 to remove “0” and “11”
   std::size_t max_wp_per_drone = ((number_of_cities-2)/number_of_drones) + 1;

   for(std::size_t i = 0; i < number_of_paths; i++)
   
     int start = rand() % (this->getSolution().at(i).size() -2) + 1;
     int end =  start + 1 + rand() % ((this->getSolution().at(i).size()-2) - start +1); 

     std::vector<std::size_t>::const_iterator first = this->getSolution().at(i).begin()+start;                              
     std::vector<std::size_t>::const_iterator second = this- >getSolution().at(i).begin()+end;

     // First Problem occurs here… Sometimes, newOrder can return nothing based on 
     //the positions of start and end. Tried to mitigate by putting a while loop 
    to regenerate the vector
    std::vector<std::size_t> newOrder(first, second);
    // RETURNS a vector from the vector of vectors sol
     flat_sol = flatten(sol);
    // compare new Order with solution and remove any duplicates..
     for(std::size_t k = 0; k < newOrder.size(); k++ )
     
            int duplicate = newOrder.at(k);
           if(std::find(flat_sol.begin(), flat_sol.end(), duplicate) != flat_sol.end())              
            
               // second problem is found here, sometimes, 
               // new order might only return a vector with a single value 
               // or values that have already been assigned to another drone. 
               // In this case, those values are removed and newOrder is now 0 
                    newOrder.erase(newOrder.begin()+k);
             
     

            
    // attempt to create the vectors here. 
    for(std::size_t j = 1; j <=parentB.getSolution().at(i).size()-2; j++)
    
         int city = parentB.getSolution().at(i).at(j);
         if(newOrder.empty())
         
             if(std::find(flat_sol.begin(), flat_sol.end(), city) == flat_sol.end())
             
                  newOrder.push_back(city);
              
          

         else if((std::find(newOrder.begin(), newOrder.end(), city) == newOrder.end())
                &&(std::find(flat_sol.begin(), flat_sol.end(), city) == flat_sol.end())
                && newOrder.size() < max_wp_per_drone )
          
                         newOrder.push_back(city);
          
     
             
    sol.push_back(newOrder);
   
   // waypoints and number_of drones are known, 
   //0 and 11 are appended to each vector in sol in the constructor.
 return DNA(sol, waypoints, number_of_drones);


我之前运行的示例输出返回以下内容:

[0,7,9,8, 11]
[0, 1,2,4,11]
[0, 10, 6, 11]
[0,3,11]

// This output is missing one waypoint.

[0,10,7,5, 11]
[0, 8,3,1,11]
[0, 6, 9, 11]
[0,2,4,11]


// This output is correct. 

不幸的是,这意味着在我后代的新孩子中。我得到正确的输出似乎是随机的。例如,对于一代人,我的人口规模有 40 个正确的孩子和 60 个缺少航点的孩子,而在某些情况下,我有更多的正确孩子。任何提示或帮助表示赞赏。

【问题讨论】:

请发布minimal reproducible example,包括main,并附上重现问题的数据。 选择一个有错误的结果,手动完成工作,然后用调试器逐步检查你的代码,看看程序在哪里偏离了你的期望。提示:您可能希望使用出现错误的最小输入大小。 【参考方案1】:

通过采用稍微不同的方法解决了这个问题。我没有在执行交叉之前拆分一系列航点,而是简单地传递一系列航点

[0,1,2,3,4,5,6,7,8,9,10,11] 

执行交叉,在计算每组的适应度时,我根据m无人机分割航点,并找到每一代的最佳解决方案。新的交叉函数如下所示:

DNA DNA::crossover( DNA &parentB)


    int start = rand () % (this->getOrder().size()-1);
    int end =  getRandomInt<std::size_t>(start +1 , this->getOrder().size()-1);

    std::vector<std::size_t>::const_iterator first = this->getOrder().begin() + start;
    std::vector<std::size_t>::const_iterator second = this->getOrder().begin() + end;

     std::vector<std::size_t> newOrder(first, second);

     for(std::size_t i = 0; i < parentB.getOrder().size(); i++)
      
          int city = parentB.getOrder().at(i);
          if(std::find(newOrder.begin(), newOrder.end(), city) == newOrder.end())
          
              newOrder.push_back(city);
          
      

    return DNA(newOrder, waypoints, number_of_drones);


【讨论】:

以上是关于在遗传算法中为多个“推销员”TSP 实现交叉函数的主要内容,如果未能解决你的问题,请参考以下文章

遗传算法求TSP问题

基于遗传算法实现TSP问题求解matlab代码

TSP基于matlab遗传算法求解旅行商问题含Matlab源码 1337期

TSP基于matlab遗传算法求解13城市旅行商问题含Matlab源码 1255期

TSP基于matlab GUI遗传算法求解旅行商问题含Matlab源码 1333期

TSP经典算例之遗传算法改进