如何使用 OCR 检测图像中的下标数字?
Posted
技术标签:
【中文标题】如何使用 OCR 检测图像中的下标数字?【英文标题】:How to detect subscript numbers in an image using OCR? 【发布时间】:2020-09-02 12:11:54 【问题描述】:我通过pytesseract
绑定使用tesseract
进行OCR。不幸的是,我在尝试提取包含下标样式数字的文本时遇到了困难——下标数字被解释为一个字母。
例如,在基本图像中:
我想将文本提取为“CH3”,即我不关心知道数字3
是图像中的下标。
我使用tesseract
的尝试是:
import cv2
import pytesseract
img = cv2.imread('test.jpeg')
# Note that I have reduced the region of interest to the known
# text portion of the image
text = pytesseract.image_to_string(
img[200:300, 200:320], config='-l eng --oem 1 --psm 13'
)
print(text)
很遗憾,这会输出错误
'CHs'
也可以获取'CHa'
,具体取决于psm
参数。
我怀疑这个问题与文本的“基线”跨行不一致有关,但我不确定。
我怎样才能准确地从这种类型的图像中提取文本?
更新 - 2020 年 5 月 19 日
在看到 Achintha Ihalage 的回答后,它没有为 tesseract
提供任何配置选项,我探索了 psm
选项。
由于感兴趣区域是已知的(在本例中,我使用 EAST 检测来定位文本的边界框),tesseract
的 psm
配置选项,在我的原始代码中将文本视为单行,可能没有必要。对上面边界框给出的感兴趣区域运行image_to_string
会得到输出
CH
3
当然可以很容易地处理得到CH3
。
【问题讨论】:
【参考方案1】:这是因为下标字体太小了。您可以使用cv2
或PIL
等python 包调整图像大小,并将调整后的图像用于OCR,如下所示。
import pytesseract
import cv2
img = cv2.imread('test.jpg')
img = cv2.resize(img, None, fx=2, fy=2) # scaling factor = 2
data = pytesseract.image_to_string(img)
print(data)
输出:
CH3
【讨论】:
缩放是我会尝试的几件事之一,它似乎在这里工作,但可能不适用于每张图像。其他步骤包括玩扩张和专门使用一组下标字符训练模型。 谢谢。一个通用的解决方案将是首选。 @MattL。您能否在答案中扩展您建议的其他步骤? 一般的解决方案是用(可能)1000 张包含正常字体和下标字体的图像来训练 CNN 模型。通过使用自己的数据训练 ResNet 或 VGGNet 架构,您还可以通过迁移学习获得更高的准确性。显然,这些更乏味。【参考方案2】:您希望在将图像输入tesseract
之前对图像进行预处理,以提高 OCR 的准确性。我在这里使用PIL
和cv2
的组合来执行此操作,因为cv2
具有良好的模糊/噪声消除过滤器(膨胀、侵蚀、阈值),PIL
可以轻松增强对比度(区分文本从背景中),我想展示如何使用...进行预处理(尽管两者一起使用并不是 100% 必要的,如下所示)。你可以写得更优雅——这只是一般的想法。
import cv2
import pytesseract
import numpy as np
from PIL import Image, ImageEnhance
img = cv2.imread('test.jpg')
def cv2_preprocess(image_path):
img = cv2.imread(image_path)
# convert to black and white if not already
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# remove noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# apply a blur
# gaussian noise
img = cv2.threshold(cv2.GaussianBlur(img, (9, 9), 0), 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# this can be used for salt and pepper noise (not necessary here)
#img = cv2.adaptiveThreshold(cv2.medianBlur(img, 7), 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
cv2.imwrite('new.jpg', img)
return 'new.jpg'
def pil_enhance(image_path):
image = Image.open(image_path)
contrast = ImageEnhance.Contrast(image)
contrast.enhance(2).save('new2.jpg')
return 'new2.jpg'
img = cv2.imread(pil_enhance(cv2_preprocess('test.jpg')))
text = pytesseract.image_to_string(img)
print(text)
输出:
CH3
cv2
预处理生成的图像如下所示:
PIL
的增强功能为您提供:
在这个具体示例中,您实际上可以在 cv2_preprocess
步骤之后停止,因为这对读者来说已经足够清楚了:
img = cv2.imread(cv2_preprocess('test.jpg'))
text = pytesseract.image_to_string(img)
print(text)
输出:
CH3
但是,如果您正在处理的东西不一定以白色背景开始(即灰度缩放转换为浅灰色而不是白色)- 我发现 PIL
步骤确实有帮助。
重点是提高tesseract
准确率的方法通常是:
-
修复 DPI(重新缩放)
修复图像的亮度/噪点
修复 tex 大小/线条
(倾斜/扭曲文本)
执行其中一项或全部三项会有所帮助...但亮度/噪音可能比其他两项更普遍(至少根据我的经验)。
【讨论】:
【参考方案3】:我认为这种方式可以更适合一般情况。
import cv2
import pytesseract
from pathlib import Path
image = cv2.imread('test.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1] # (suitable for sharper black and white pictures
contours = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1] # is OpenCV2.4 or OpenCV3
result_list = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
area = cv2.contourArea(c)
if area > 200:
detect_area = image[y:y + h, x:x + w]
# detect_area = cv2.GaussianBlur(detect_area, (3, 3), 0)
predict_char = pytesseract.image_to_string(detect_area, lang='eng', config='--oem 0 --psm 10')
result_list.append((x, predict_char))
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), thickness=2)
result = ''.join([char for _, char in sorted(result_list, key=lambda _x: _x[0])])
print(result) # CH3
output_dir = Path('./temp')
output_dir.mkdir(parents=True, exist_ok=True)
cv2.imwrite(f"output_dir/Path('image.png')", image)
cv2.imwrite(f"output_dir/Path('clean.png')", thresh)
更多参考
我强烈建议您参考以下示例,这些示例对 OCR 很有帮助。
-
Get the location of all text present in image using opencv
Using YOLO or other image recognition techniques to identify all alphanumeric text present in images
【讨论】:
以上是关于如何使用 OCR 检测图像中的下标数字?的主要内容,如果未能解决你的问题,请参考以下文章