从db中提取多列数据并使用spark写入文件?
Posted
技术标签:
【中文标题】从db中提取多列数据并使用spark写入文件?【英文标题】:extract multiple columns data from db and write to a file using spark? 【发布时间】:2015-12-06 01:37:19 【问题描述】:下面的火花代码垂直而不是水平保存数据有人可以帮忙吗? 如何将结果集输出保存到 spark 中的文件?用户名、密码、dburl 来自 spring 框架配置值。
例如:- 1、 2、 3
预期:- 1,2,3
package com.kali.db
/**
* Created by kalit_000 on 05/12/2015.
*/
import java.util
import org.apache.spark.SparkConf
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark._
import java.sql.ResultSet, DriverManager, Connection
import org.apache.spark.rdd.JdbcRDD, RDD
import org.springframework.context.support.ClassPathXmlApplicationContext
import scala.collection.mutable.ListBuffer
case class SqlMulti(driver:String,url:String,username:String,password:String,sql:String)
object SqlMultiExample
def main (args: Array[String]):Unit=
Logger.getLogger("org").setLevel(Level.WARN)
Logger.getLogger("akka").setLevel(Level.WARN)
val conf = new SparkConf().setMaster("local[1]").setAppName("MultipleSqlColumns").set("spark.hadoop.validateOutputSpecs", "false")
val sc = new SparkContext(conf)
//read the application context file
val ctx = new ClassPathXmlApplicationContext("multiplecolumns.xml")
val DBinfo = ctx.getBean("SqlTest").asInstanceOf[SqlMulti]
/*assign class values to variables*/
val driver = DBinfo.driver
val url = DBinfo.url
val username = DBinfo.username
val password = DBinfo.password
val query = DBinfo.sql
var connection: Connection = null
val sqlquery = DBinfo.sql
println("DB Driver:-%s".format(driver))
println("DB Url:-%s".format(url))
println("Username:-%s".format(username))
println("Password:-%s".format(password))
println("Query:-%s".format(query))
try
Class.forName(driver)
connection = DriverManager.getConnection(url, username, password)
val statement = connection.createStatement()
val resultSet = statement.executeQuery(query)
resultSet.setFetchSize(10);
val columnnumber = resultSet.getMetaData().getColumnCount.toInt
/*OP COLUMN NAMES*/
var i = 0.toInt;
for (i <- 1 to columnnumber.toInt)
val columnname = resultSet.getMetaData().getColumnName(i)
println("Column Names are:- %s".format(columnname))
/*OP DATA*/
while (resultSet.next())
var list = new java.util.ArrayList[String]()
for (i <- 1 to columnnumber.toInt)
list.add(resultSet.getString(i))
//println(list)
sc.parallelize(list.toString.replace("null", "N/A")).saveAsTextFile("C:\\Users\\kalit_000\\Desktop\\typesafe\\scaladbop\\op.txt")
catch
case e: Exception => e.printStackTrace
connection.close()
sc.stop()
我重新编写了代码以使用 read.jdbc 这已经解决了我的所有要求
package com.kali.db
/**
* Created by kalit_000 on 06/12/2015.
*/
import java.util.Properties
import org.apache.spark.SparkConf
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark._
import org.apache.spark.rdd.JdbcRDD, RDD
import org.apache.spark.sql.DataFrame
import org.springframework.context.support.ClassPathXmlApplicationContext
case class SparkSqlValueClassMPP(driver:String,url:String,username:String,password:String,table:String,opdelimeter:String,lowerbound:String,upperbound:String,numberofparitions:String,parallelizecolumn:String)
object SparkDBExtractorMPP
def main (args: Array[String])
Logger.getLogger("org").setLevel(Level.WARN)
Logger.getLogger("akka").setLevel(Level.WARN)
val conf = new SparkConf().setMaster("local[*]").setAppName("SparkDBExtractorMPP").set("spark.hadoop.validateOutputSpecs", "false")
val sc = new SparkContext(conf)
def opfile(value:DataFrame,delimeter:String):RDD[String]=
value.map(x => x.toString.replace("[","").replace("]","").replace(",",delimeter))
//read the application context file
val ctx = new ClassPathXmlApplicationContext("sparkDBExtractorMpp.xml")
val DBinfo = ctx.getBean("SparkSQLDBExtractorMPP").asInstanceOf[SparkSqlValueClassMPP]
val driver = DBinfo.driver
val url = DBinfo.url
val username = DBinfo.username
val password = DBinfo.password
val table = DBinfo.table
val opdelimeter=DBinfo.opdelimeter
val lowerbound=DBinfo.lowerbound.toInt
val upperbound=DBinfo.upperbound.toInt
val numberofpartitions=DBinfo.numberofparitions.toInt
val parallelizecolumn=DBinfo.parallelizecolumn
println("DB Driver:-%s".format(driver))
println("DB Url:-%s".format(url))
println("Username:-%s".format(username))
println("Password:-%s".format(password))
println("Table:-%s".format(table))
println("Opdelimeter:-%s".format(opdelimeter))
println("Lowerbound:-%s".format(lowerbound))
println("Upperbound:-%s".format(upperbound))
println("Numberofpartitions:-%s".format(numberofpartitions))
println("Parallelizecolumn:-%s".format(parallelizecolumn))
try
val props=new Properties()
props.put("user",username)
props.put("password",password)
props.put("driver",driver)
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
val df = sqlContext.read.jdbc(url,table,parallelizecolumn,lowerbound,upperbound,numberofpartitions,props)
df.show(10)
opfile(df,opdelimeter).saveAsTextFile("C:\\Users\\kalit_000\\Desktop\\typesafe\\scaladbop\\op.txt")
catch
case e: Exception => e.printStackTrace
sc.stop()
为了使这段代码高度可配置,我使用 Java spring 框架
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN"
"http://www.springframework.org/dtd/spring-beans.dtd">
<beans>
<bean id="queryProps" class="org.springframework.beans.factory.config.PropertiesFactoryBean">
</bean>
<bean id="SparkSQLDBExtractorMPP" class="com.kali.db.SparkSqlValueClassMPP">
<constructor-arg value="com.microsoft.sqlserver.jdbc.SQLServerDriver" />
<constructor-arg value="jdbc:sqlserver://localhost;user=admin;password=oracle;database=AdventureWorks2014" />
<constructor-arg value="admin" />
<constructor-arg value="oracle" />
<constructor-arg value="(select top 100 CustomerID,StoreID,TerritoryID,AccountNumber,ModifiedDate from customer ) as customer" />
<constructor-arg value="~" />
<constructor-arg value="1" />
<constructor-arg value="100" />
<constructor-arg value="8" />
<constructor-arg value="CustomerID" />
</bean>
</beans>
项目现在在github中
https://github.com/kali786516/ScalaDB
【问题讨论】:
【参考方案1】:输出数据是垂直保存的,因为“list.add(resultSet.getString(i))”只是将每一列线性插入到列表中。
如果希望在单行中输出“db row”,您应该构建一个列表,每个元素都是“db row”的字符串表示,而不是列。并且“db row”需要转换为格式正确的字符串。
【讨论】:
你能举个例子吗,我不知道列名是什么我不希望我的代码用列名硬编码,我想让这段代码可重用有没有其他方式? 嗨,Shawn,感谢您的帮助,我使用 sparksql 数据帧替换了我的代码,这比传统的结果集示例简单 100 倍,如果有人想使用它,我将在这里分享代码。以上是关于从db中提取多列数据并使用spark写入文件?的主要内容,如果未能解决你的问题,请参考以下文章
为啥从 Spark 写入 Vertica DB 比从 Spark 写入 MySQL 需要更长的时间?