PySpark:将 SchemaRDD 映射到 SchemaRDD
Posted
技术标签:
【中文标题】PySpark:将 SchemaRDD 映射到 SchemaRDD【英文标题】:PySpark: Map a SchemaRDD into a SchemaRDD 【发布时间】:2015-07-20 16:08:02 【问题描述】:我正在将 JSON 对象文件加载为 PySpark SchemaRDD
。我想改变对象的“形状”(基本上,我正在展平它们),然后插入到 Hive 表中。
我遇到的问题是以下返回 PipelinedRDD
而不是 SchemaRDD
:
log_json.map(flatten_function)
(其中log_json
是SchemaRDD
)。
有没有办法保留类型、转换回所需类型或有效地从新类型插入?
【问题讨论】:
你能提供一些细节吗?您提到了SchemaRDD
,所以我猜它是 Spark
@zero323 输出是平的;输入不是。我们有火花 1.2。
【参考方案1】:
与其说是真正的解决方案,不如说是一个想法。假设您的数据如下所示:
data = [
"foobar":
"foo": 1, "bar": 2, "fozbaz":
"foz": 0, "baz": "b": -1, "a": -1, "z": -1
]
import json
with open("foobar.json", "w") as fw:
for record in data:
fw.write(json.dumps(record))
首先让我们加载它并检查架构:
>>> srdd = sqlContext.jsonFile("foobar.json")
>>> srdd.printSchema()
root
|-- foobar: struct (nullable = true)
| |-- bar: integer (nullable = true)
| |-- foo: integer (nullable = true)
| |-- fozbaz: struct (nullable = true)
| | |-- baz: struct (nullable = true)
| | | |-- a: integer (nullable = true)
| | | |-- b: integer (nullable = true)
| | | |-- z: integer (nullable = true)
| | |-- foz: integer (nullable = true)
现在我们按照Justin Pihony 的建议注册表并提取模式:
srdd.registerTempTable("srdd")
schema = srdd.schema().jsonValue()
我们可以使用类似下面的方法来扁平化模式,而不是扁平化数据:
def flatten_schema(schema):
"""Take schema as returned from schema().jsonValue()
and return list of field names with full path"""
def _flatten(schema, path="", accum=None):
# Extract name of the current element
name = schema.get("name")
# If there is a name extend path
if name is not None:
path = "0.1".format(path, name) if path else name
# It is some kind of struct
if isinstance(schema.get("fields"), list):
for field in schema.get("fields"):
_flatten(field, path, accum)
elif isinstance(schema.get("type"), dict):
_flatten(schema.get("type"), path, accum)
# It is an atomic type
else:
accum.append(path)
accum = []
_flatten(schema, "", accum)
return accum
添加小助手来格式化查询字符串:
def build_query(schema, df):
select = ", ".join(
"0 AS 1".format(field, field.replace(".", "_"))
for field in flatten_schema(schema))
return "SELECT 0 FROM 1".format(select, df)
最后的结果:
>>> sqlContext.sql(build_query(schema, "srdd")).printSchema()
root
|-- foobar_bar: integer (nullable = true)
|-- foobar_foo: integer (nullable = true)
|-- foobar_fozbaz_baz_a: integer (nullable = true)
|-- foobar_fozbaz_baz_b: integer (nullable = true)
|-- foobar_fozbaz_baz_z: integer (nullable = true)
|-- foobar_fozbaz_foz: integer (nullable = true)
免责声明:我没有尝试深入研究架构结构,所以很可能有些情况没有被flatten_schema
涵盖。
【讨论】:
我的问题不是如何展平架构。我的问题是如何将我的 RDD 保持为 SchemaRDD。 我理解并且我相信它实际上可以解决问题,而无需手动指定架构。输出是平面的,类型被保留并且模式已经应用。【参考方案2】:看起来select
在python中不可用,所以你必须registerTempTable
并将其写成SQL语句,比如
`SELECT flatten(*) FROM TABLE`
在SQL中设置函数后
sqlCtx.registerFunction("flatten", lambda x: flatten_function(x))
@zero323 提出,可能不支持针对 * 的函数...so you can just create a function that takes in your data types and pass all of that in.
【讨论】:
我很确定在 * 上调用 udf 是不允许的。你有任何工作的例子吗?关于选择它从 1.3 开始可用。【参考方案3】:解决办法是applySchema
:
mapped = log_json.map(flatten_function)
hive_context.applySchema(mapped, flat_schema).insertInto(name)
其中 flat_schema 是一个 StructType
代表架构,其方式与您从 log_json.schema()
获得的方式相同(但显然是扁平化的)。
【讨论】:
【参考方案4】:你可以试试这个...有点长但有效
def flat_table(df,table_name):
def rec(l,in_array,name):
for i,v in enumerate(l):
if isinstance(v['type'],dict):
if 'fields' in v['type'].keys():
rec(name=name+[v['name']],l=v['type']['fields'],in_array=False)
if 'elementType' in v['type'].keys():
rec(name=name+[v['name']],l=v['type']['elementType']['fields'],in_array=True)
else:#recursia stop rule
#if this is an array so we need to explode every element in the array
if in_array:
field_list.append('nodesubnode.array'.format(node=".".join(name)+'.' if name else '', subnode=v['name']))
else:
field_list.append('nodesubnode'.format(node=".".join(name)+'.' if name else '', subnode=v['name']))
# table_name='x'
field_list=[]
l=df.schema.jsonValue()['fields']
df.registerTempTable(table_name)
rec(l,in_array=False,name=[table_name])
#create the select satement
inner_fileds=[]
outer_fields=[]
flag=True
for x in field_list:
f=x.split('.')
if f[-1]<>'array':
inner_fileds.append('field as name'.format(field=".".join(f),name=f[-1]))
of=['a']+f[-1:]
outer_fields.append('field as name'.format(field=".".join(of),name=of[-1]))
else:
if flag:#add the array to the inner query for expotion only once for every array field
inner_fileds.append('explode(field) as name'.format(field=".".join(f[:-2]),name=f[-3]))
flag=False
of=['a']+f[-3:-1]
outer_fields.append('field as name'.format(field=".".join(of),name=of[-1]))
q="""select outer_fields
from (select inner_fileds
from table_name) a""".format(outer_fields=',\n'.join(outer_fields),inner_fileds=',\n'.join(inner_fileds),table_name=table_name)
return q
【讨论】:
以上是关于PySpark:将 SchemaRDD 映射到 SchemaRDD的主要内容,如果未能解决你的问题,请参考以下文章