Nvidia CUDA 错误:没有可在设备上执行的内核映像

Posted

技术标签:

【中文标题】Nvidia CUDA 错误:没有可在设备上执行的内核映像【英文标题】:Nvidia CUDA Error: no kernel image is available for execution on the device 【发布时间】:2021-08-21 20:15:36 【问题描述】:

我有一台 NVidia GeForce GTX 770,并希望将其 CUDA 功能用于我正在进行的项目。我的机器运行的是 windows 10 64bit。

我已按照提供的 CUDA Toolkit 安装指南进行操作:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/。

安装驱动程序后,我打开了示例解决方案(使用 Visual Studio 2019)并构建了 deviceQuerybandwidthTest 示例。这是输出:

设备查询:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.3\bin\win64\Debug\deviceQuery.exe Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA GeForce GTX 770"
  CUDA Driver Version / Runtime Version          11.3 / 11.3
  CUDA Capability Major/Minor version number:    3.0
  Total amount of global memory:                 2048 MBytes (2147483648 bytes)
  (008) Multiprocessors, (192) CUDA Cores/MP:    1536 CUDA Cores
  GPU Max Clock rate:                            1137 MHz (1.14 GHz)
  Memory Clock rate:                             3505 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 524288 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
  Maximum Layered 1D Texture Size, (num) layers  1D=(16384), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(16384, 16384), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total shared memory per multiprocessor:        49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  2048
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 1 copy engine(s)
  Run time limit on kernels:                     Yes
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  CUDA Device Driver Mode (TCC or WDDM):         WDDM (Windows Display Driver Model)
  Device supports Unified Addressing (UVA):      Yes
  Device supports Managed Memory:                Yes
  Device supports Compute Preemption:            No
  Supports Cooperative Kernel Launch:            No
  Supports MultiDevice Co-op Kernel Launch:      No
  Device PCI Domain ID / Bus ID / location ID:   0 / 3 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.3, CUDA Runtime Version = 11.3, NumDevs = 1
Result = PASS

带宽:

[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: NVIDIA GeForce GTX 770
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         3.1

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         3.4

 Device to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)    Bandwidth(GB/s)
   32000000         161.7

Result = PASS

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.

但是,当我尝试运行任何其他示例时,例如随 CUDA 11.3 运行时模板提供的起始代码:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"

#include <stdio.h>

cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);

__global__ void addKernel(int* c, const int* a, const int* b) 
    int i = threadIdx.x;
    c[i] = a[i] + b[i];


int main() 
    const int arraySize = 5;
    const int a[arraySize] =  1, 2, 3, 4, 5 ;
    const int b[arraySize] =  10, 20, 30, 40, 50 ;
    int c[arraySize] =  0 ;

    // Add vectors in parallel.
    cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "addWithCuda failed!");
        return 1;
    

    printf("1,2,3,4,5 + 10,20,30,40,50 = %d,%d,%d,%d,%d\n", c[0], c[1], c[2], c[3], c[4]);

    // cudaDeviceReset must be called before exiting in order for profiling and
    // tracing tools such as Nsight and Visual Profiler to show complete traces.
    cudaStatus = cudaDeviceReset();
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaDeviceReset failed!");
        return 1;
    

    return 0;


// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size) 
    int* dev_a = 0;
    int* dev_b = 0;
    int* dev_c = 0;
    cudaError_t cudaStatus;

    // Choose which GPU to run on, change this on a multi-GPU system.
    cudaStatus = cudaSetDevice(0);
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaSetDevice failed!  Do you have a CUDA-capable GPU installed?");
        goto Error;
    

    // Allocate GPU buffers for three vectors (two input, one output)    .
    cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    

    cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    

    cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMalloc failed!");
        goto Error;
    

    // Copy input vectors from host memory to GPU buffers.
    cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    

    cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    

    // Launch a kernel on the GPU with one thread for each element.
    addKernel << <1, size >> > (dev_c, dev_a, dev_b);

    // Check for any errors launching the kernel
    cudaStatus = cudaGetLastError();
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
        goto Error;
    

    // cudaDeviceSynchronize waits for the kernel to finish, and returns
    // any errors encountered during the launch.
    cudaStatus = cudaDeviceSynchronize();
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
        goto Error;
    

    // Copy output vector from GPU buffer to host memory.
    cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
    if (cudaStatus != cudaSuccess) 
        fprintf(stderr, "cudaMemcpy failed!");
        goto Error;
    

Error:
    cudaFree(dev_c);
    cudaFree(dev_a);
    cudaFree(dev_b);

    return cudaStatus;

我收到以下错误:

addKernel launch failed: no kernel image is available for execution on the device
addWithCuda failed!

从这张表:https://docs.nvidia.com/deploy/cuda-compatibility/index.html#support-hardware__table-hardware-support你可以看到我GPU的计算能力版本(3.0)其实和安装的驱动(465.19.01+)是兼容的,那为什么我不能运行除了查询以外的任何代码和带宽测试?

【问题讨论】:

@RobertCrovella 我刚刚安装了 CUDA Toolkit 10.2,现在一切正常。非常感谢。 @RobertCrovella 如果您将评论作为答案发表,我很乐意将其标记为已接受。 【参考方案1】:

您的 GTX770 GPU 是“Kepler”架构计算能力 3.0 设备。这些设备在 CUDA 10 发布周期中被弃用,并且从 CUDA 11.0 开始不再支持它们

CUDA 10.2 版本是带有support for compute 3.0 devices 的最后一个工具包。您将无法使 CUDA 11.0 或更高版本与您的 GPU 一起使用。查询和带宽测试使用的 API 不会尝试在您的 GPU 上运行代码,这就是为什么它们可以在任何其他示例都不起作用的地方工作。

【讨论】:

以上是关于Nvidia CUDA 错误:没有可在设备上执行的内核映像的主要内容,如果未能解决你的问题,请参考以下文章

带有 CUDA 和 Nvidia 卡的 PyTorch:RuntimeError:CUDA 错误:所有支持 CUDA 的设备都忙或不可用,但 torch.cuda.is_available() 为 T

Pytorch CUDA 错误:没有内核映像可用于在带有 cuda 11.1 的 RTX 3090 上的设备上执行

可以在没有 GPU 的情况下运行 nvidia-docker 吗?

无法在 GeForce 540M 上运行 CUDA 或 OpenCL

NVIDIA Cuda if 语句 [关闭]

Nvidia gt 750m 上的安装错误 CUDA 5.5