Nvidia CUDA 错误:没有可在设备上执行的内核映像
Posted
技术标签:
【中文标题】Nvidia CUDA 错误:没有可在设备上执行的内核映像【英文标题】:Nvidia CUDA Error: no kernel image is available for execution on the device 【发布时间】:2021-08-21 20:15:36 【问题描述】:我有一台 NVidia GeForce GTX 770,并希望将其 CUDA 功能用于我正在进行的项目。我的机器运行的是 windows 10 64bit。
我已按照提供的 CUDA Toolkit 安装指南进行操作:https://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/。
安装驱动程序后,我打开了示例解决方案(使用 Visual Studio 2019)并构建了 deviceQuery 和 bandwidthTest 示例。这是输出:
设备查询:
C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.3\bin\win64\Debug\deviceQuery.exe Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce GTX 770"
CUDA Driver Version / Runtime Version 11.3 / 11.3
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 2048 MBytes (2147483648 bytes)
(008) Multiprocessors, (192) CUDA Cores/MP: 1536 CUDA Cores
GPU Max Clock rate: 1137 MHz (1.14 GHz)
Memory Clock rate: 3505 Mhz
Memory Bus Width: 256-bit
L2 Cache Size: 524288 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 3 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.3, CUDA Runtime Version = 11.3, NumDevs = 1
Result = PASS
带宽:
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: NVIDIA GeForce GTX 770
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 3.1
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 3.4
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(GB/s)
32000000 161.7
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
但是,当我尝试运行任何其他示例时,例如随 CUDA 11.3 运行时模板提供的起始代码:
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
__global__ void addKernel(int* c, const int* a, const int* b)
int i = threadIdx.x;
c[i] = a[i] + b[i];
int main()
const int arraySize = 5;
const int a[arraySize] = 1, 2, 3, 4, 5 ;
const int b[arraySize] = 10, 20, 30, 40, 50 ;
int c[arraySize] = 0 ;
// Add vectors in parallel.
cudaError_t cudaStatus = addWithCuda(c, a, b, arraySize);
if (cudaStatus != cudaSuccess)
fprintf(stderr, "addWithCuda failed!");
return 1;
printf("1,2,3,4,5 + 10,20,30,40,50 = %d,%d,%d,%d,%d\n", c[0], c[1], c[2], c[3], c[4]);
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaStatus = cudaDeviceReset();
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaDeviceReset failed!");
return 1;
return 0;
// Helper function for using CUDA to add vectors in parallel.
cudaError_t addWithCuda(int* c, const int* a, const int* b, unsigned int size)
int* dev_a = 0;
int* dev_b = 0;
int* dev_c = 0;
cudaError_t cudaStatus;
// Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU installed?");
goto Error;
// Allocate GPU buffers for three vectors (two input, one output) .
cudaStatus = cudaMalloc((void**)&dev_c, size * sizeof(int));
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMalloc failed!");
goto Error;
cudaStatus = cudaMalloc((void**)&dev_a, size * sizeof(int));
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMalloc failed!");
goto Error;
cudaStatus = cudaMalloc((void**)&dev_b, size * sizeof(int));
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMalloc failed!");
goto Error;
// Copy input vectors from host memory to GPU buffers.
cudaStatus = cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
cudaStatus = cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
// Launch a kernel on the GPU with one thread for each element.
addKernel << <1, size >> > (dev_c, dev_a, dev_b);
// Check for any errors launching the kernel
cudaStatus = cudaGetLastError();
if (cudaStatus != cudaSuccess)
fprintf(stderr, "addKernel launch failed: %s\n", cudaGetErrorString(cudaStatus));
goto Error;
// cudaDeviceSynchronize waits for the kernel to finish, and returns
// any errors encountered during the launch.
cudaStatus = cudaDeviceSynchronize();
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after launching addKernel!\n", cudaStatus);
goto Error;
// Copy output vector from GPU buffer to host memory.
cudaStatus = cudaMemcpy(c, dev_c, size * sizeof(int), cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess)
fprintf(stderr, "cudaMemcpy failed!");
goto Error;
Error:
cudaFree(dev_c);
cudaFree(dev_a);
cudaFree(dev_b);
return cudaStatus;
我收到以下错误:
addKernel launch failed: no kernel image is available for execution on the device
addWithCuda failed!
从这张表:https://docs.nvidia.com/deploy/cuda-compatibility/index.html#support-hardware__table-hardware-support你可以看到我GPU的计算能力版本(3.0)其实和安装的驱动(465.19.01+)是兼容的,那为什么我不能运行除了查询以外的任何代码和带宽测试?
【问题讨论】:
@RobertCrovella 我刚刚安装了 CUDA Toolkit 10.2,现在一切正常。非常感谢。 @RobertCrovella 如果您将评论作为答案发表,我很乐意将其标记为已接受。 【参考方案1】:您的 GTX770 GPU 是“Kepler”架构计算能力 3.0 设备。这些设备在 CUDA 10 发布周期中被弃用,并且从 CUDA 11.0 开始不再支持它们
CUDA 10.2 版本是带有support for compute 3.0 devices 的最后一个工具包。您将无法使 CUDA 11.0 或更高版本与您的 GPU 一起使用。查询和带宽测试使用的 API 不会尝试在您的 GPU 上运行代码,这就是为什么它们可以在任何其他示例都不起作用的地方工作。
【讨论】:
以上是关于Nvidia CUDA 错误:没有可在设备上执行的内核映像的主要内容,如果未能解决你的问题,请参考以下文章
带有 CUDA 和 Nvidia 卡的 PyTorch:RuntimeError:CUDA 错误:所有支持 CUDA 的设备都忙或不可用,但 torch.cuda.is_available() 为 T
Pytorch CUDA 错误:没有内核映像可用于在带有 cuda 11.1 的 RTX 3090 上的设备上执行
可以在没有 GPU 的情况下运行 nvidia-docker 吗?