无法使用 Pyspark 2.4.4 读取 s3 存储桶中的镶木地板文件
Posted
技术标签:
【中文标题】无法使用 Pyspark 2.4.4 读取 s3 存储桶中的镶木地板文件【英文标题】:Cannot read parquet files in s3 bucket with Pyspark 2.4.4 【发布时间】:2020-10-19 17:47:20 【问题描述】:我正在使用 Pyspark 2.4.4。
我想将 s3 存储桶中的一些 parquet 文件加载到 spark 数据帧中,并且我想一次读取所有这些文件。
我一直在这些链接中寻找如何做到这一点:
How to read parquet data from S3 to spark dataframe Python? Unable to read from s3 bucket using spark https://gist.github.com/asmaier/5768c7cda3620901440a62248614bbd0我尝试了多种方式,但无法加载文件,例如:
import os
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pandas as pd
import databricks.koalas as ks
import boto3
from boto3.session import Session
import botocore
from zipfile import ZipFile
import urllib
import datetime
import os
from s3fs import S3FileSystem
import dask.dataframe as dd
aws_region = 'ap-southeast-1'
# Create Spark config for our Kubernetes based cluster manager
sparkConf = SparkConf()
sparkConf.setMaster("k8s://https://kubernetes.default.svc.cluster.local:443")
sparkConf.setAppName("spark")
sparkConf.set("spark.kubernetes.container.image", "<myimage>")
sparkConf.set("spark.kubernetes.container.image.pullSecrets", "<secret>")
sparkConf.set("spark.kubernetes.namespace", "spark")
sparkConf.set("spark.executor.instances", "3")
sparkConf.set("spark.executor.cores", "1")
sparkConf.set("spark.driver.memory", "512m")
sparkConf.set("spark.executor.memory", "512m")
sparkConf.set("spark.kubernetes.pyspark.pythonVersion", "3")
sparkConf.set("spark.kubernetes.authenticate.driver.serviceAccountName", "spark")
sparkConf.set("spark.kubernetes.authenticate.serviceAccountName", "spark")
sparkConf.set("spark.driver.port", "29413")
sparkConf.set("spark.driver.host", "<HOST>")
sparkConf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
sparkConf.set("com.amazonaws.services.s3.enableV4", "true")
sparkConf.set("fs.s3a.access.key", "<mykey>")
sparkConf.set("fs.s3a.secret.key", "<mysecret>")
sparkConf.set("fs.s3a.connection.maximum", "100000")
# see https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
sparkConf.set("fs.s3a.endpoint", "s3." + aws_region + ".amazonaws.com")
# Initialize our Spark cluster, this will actually
# generate the worker nodes.
spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
sc = spark.sparkContext
df = spark.read.parquet(f"s3a://<path>")
我也试过了:
import os
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
import pandas as pd
import databricks.koalas as ks
import boto3
from boto3.session import Session
import botocore
from zipfile import ZipFile
import urllib
import datetime
import os
from s3fs import S3FileSystem
import dask.dataframe as dd
aws_region = 'ap-southeast-1'
# Create Spark config for our Kubernetes based cluster manager
sparkConf = SparkConf()
sparkConf.setMaster("k8s://https://kubernetes.default.svc.cluster.local:443")
sparkConf.setAppName("spark")
sparkConf.set("spark.kubernetes.container.image", "<myimage>")
sparkConf.set("spark.kubernetes.container.image.pullSecrets", "<secret>")
sparkConf.set("spark.kubernetes.namespace", "spark")
sparkConf.set("spark.executor.instances", "3")
sparkConf.set("spark.executor.cores", "1")
sparkConf.set("spark.driver.memory", "512m")
sparkConf.set("spark.executor.memory", "512m")
sparkConf.set("spark.kubernetes.pyspark.pythonVersion", "3")
sparkConf.set("spark.kubernetes.authenticate.driver.serviceAccountName", "spark")
sparkConf.set("spark.kubernetes.authenticate.serviceAccountName", "spark")
sparkConf.set("spark.driver.port", "29413")
sparkConf.set("spark.driver.host", "<HOST>")
# Initialize our Spark cluster, this will actually
# generate the worker nodes.
spark = SparkSession.builder.config(conf=sparkConf).getOrCreate()
sc = spark.sparkContext
sc.setSystemProperty("com.amazonaws.services.s3.enableV4", "true")
hadoop_conf=sc._jsc.hadoopConfiguration()
aws_region = 'ap-southeast-1'
# see https://***.com/questions/43454117/how-do-you-use-s3a-with-spark-2-1-0-on-aws-us-east-2
hadoop_conf.set("fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
hadoop_conf.set("com.amazonaws.services.s3.enableV4", "true")
hadoop_conf.set("fs.s3a.access.key", "<KEY>")
hadoop_conf.set("fs.s3a.secret.key", "<SECRET>")
hadoop_conf.set("fs.s3a.connection.maximum", "100000")
# see https://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region
hadoop_conf.set("fs.s3a.endpoint", "s3." + aws_region + ".amazonaws.com")
import pyspark
date = datetime.datetime.today() - datetime.timedelta(days=2)
path = '<path>'
sql=pyspark.sql.SparkSession(sc)
sc.parquet("s3a://" + path)
但我有这个错误:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-6-14c1e166e21f> in <module>
1 date = datetime.datetime.today() - datetime.timedelta(days=2)
----> 2 df = spark.read.parquet(f"s3a://cp-datadumps/MCF/2020/10/17/advances/advances.parquet_0_0_0.snappy.parquet")
/usr/local/spark/python/pyspark/sql/readwriter.py in parquet(self, *paths)
314 [('name', 'string'), ('year', 'int'), ('month', 'int'), ('day', 'int')]
315 """
--> 316 return self._df(self._jreader.parquet(_to_seq(self._spark._sc, paths)))
317
318 @ignore_unicode_prefix
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling 012.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o209.parquet.
: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2195)
at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2654)
at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2667)
at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:94)
at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2703)
at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2685)
at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:373)
at org.apache.hadoop.fs.Path.getFileSystem(Path.java:295)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:547)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary$1.apply(DataSource.scala:545)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
at scala.collection.immutable.List.foreach(List.scala:392)
at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
at scala.collection.immutable.List.flatMap(List.scala:355)
at org.apache.spark.sql.execution.datasources.DataSource.org$apache$spark$sql$execution$datasources$DataSource$$checkAndGlobPathIfNecessary(DataSource.scala:545)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:359)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:644)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:2101)
at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2193)
... 30 more
我知道路径是正确的,因为使用 das 我能够加载数据: `
storage_options =
"key": "<MYKEY>",
"secret": "<MYSECRET>",
s3 = S3FileSystem(**storage_options)
s3.invalidate_cache()
df1 = dd.read_parquet(f"s3://<path>", storage_options=storage_options)
【问题讨论】:
【参考方案1】:该问题隐藏在 Java 堆栈跟踪的末尾,并且独立于 Parquet 文件。缺少的是 S3A 文件系统所需的库不可用。
java.lang.RuntimeException: java.lang.ClassNotFoundException: Class org.apache.hadoop.fs.s3a.S3AFileSystem not found
您需要确保 hadoop-aws JAR 在类路径中。此 JAR 包含在上述代码中找不到的类 org.apache.hadoop.fs.s3a.S3AFileSystem
。
有关这些 JAR 的更多信息,请访问 https://hadoop.apache.org/docs/current/hadoop-aws/tools/hadoop-aws/index.html#Getting_Started
【讨论】:
以上是关于无法使用 Pyspark 2.4.4 读取 s3 存储桶中的镶木地板文件的主要内容,如果未能解决你的问题,请参考以下文章
无法从 S3 读取 csv 到 AWS 上 EC2 实例上的 pyspark 数据帧
PySpark - Spark 集群 EC2 - 无法保存到 S3