在scala中调用collect()函数时出现异常
Posted
技术标签:
【中文标题】在scala中调用collect()函数时出现异常【英文标题】:Exception when calling collect() function in scala 【发布时间】:2018-01-04 10:44:40 【问题描述】:我试图编写自定义代码来比较源架构 (SAS) 和目标架构 (Hive) 的数据类型。在 SAS 中,我们有不同的数据类型。例如对于日期时间,数据类型定义为Num
,格式定义为DateTime20.
(例如)。在 hive 中,此数据类型等效于 Timestamp
。
因此,我的源架构文件如下所示:source.csv 文件
S_No,Variable,Type,Len,Format,Informat
6,EMP_HOURS,Num,8,15.2,15.1
4,EMP_NAME,Char,50,,
1,DATETIME,Num,8,DATETIME20.,DATETIME20.
5,HEADER_ROW_COUNT,Num,8,,
2,LOAD_DATETIME,Num,8,DATETIME20.,DATETIME20.
3,SOURCE_BANK,Char,1,,
SASToHiveMappings.csv 文件
Num,Double,Double
Num,DateTime,Timestamp
Num, ,Integer
Char, ,String
我在下面定义了一个自定义函数:
def _getHiveTypeMapping(dataType: String, dataFormat: String) : String =
val sasToHiveMappingLocation = "s3a://abc/SASToHiveMappings.csv"
val mappings = sc.textFile(sasToHiveMappingLocation)
var definedType=""
try
if(dataFormat.toUpperCase.contains("DATETIME")) definedType="datetime"
else if(dataFormat.toDouble.getClass.getName == "double") definedType="Double"
else definedType="Unknown"
catch
case _: Throwable => definedType="Unknown"
if (definedType=="" || definedType=="Unknown" ) definedType=dataFormat
else definedType=definedType
try
val atype=mappings.map(x => x.split(",")).filter(x => x(0).toUpperCase.contains(dataType.toUpperCase)).filter(x => x(1).toUpperCase.contains(definedType.toUpperCase)).take(1).map(_(2))
if (atype.size >0) atype(0) else ""
catch
case e: Exception => e.getMessage.toString
现在当我运行以下命令时,它给了我正确的结果。
scala> rows.map(x => x.split(",")).map(y => (y(1),y(2),y(4))).take(6).map case (a,b,c) => (a,_getHiveTypeMapping(b,c))
res196: Array[(String, String)] = Array((EMP_HOURS,Double), (EMP_NAME,String), (DATETIME,Timestamp), (HEADER_ROW_COUNT,Integer), (LOAD_DATETIME,Timestamp), (SOURCE_BANK,String))
但是当我删除中间的take(6)
并尝试运行collect()
函数时,我得到NullPointerException
。我不知道为什么我会得到这个。
即
scala> rows.map(x => x.split(",")).map(y => (y(1),y(2),y(4))).map case (a,b,c) => (a,_getHiveTypeMapping(b,c)) .collect()
例外是:
18/01/04 10:42:13 WARN TaskSetManager: Lost task 1.0 in stage 267.0 (TID 313, localhost, executor driver): TaskKilled (stage cancelled)
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 267.0 failed 1 times, most recent failure: Lost task 0.0 in stage 267.0 (TID 312, localhost, executor driver): java.lang.NullPointerException
at _getHiveTypeMapping(<console>:33)
at $anonfun$3.apply(<console>:42)
at $anonfun$3.apply(<console>:42)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2087)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
... 48 elided
Caused by: java.lang.NullPointerException
at _getHiveTypeMapping(<console>:33)
at $anonfun$3.apply(<console>:42)
at $anonfun$3.apply(<console>:42)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
at scala.collection.Iterator$class.foreach(Iterator.scala:893)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
at scala.collection.AbstractIterator.to(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$13.apply(RDD.scala:936)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2062)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
`
请你帮忙,因为我有点迷茫为什么会发生这种情况。
【问题讨论】:
【参考方案1】:您在方法_getHiveTypeMapping
中使用了SparkContext
。在您崩溃的代码中,您在RDD
上的map
操作中应用_getHiveTypeMapping
。该代码将在执行程序上执行,而不是在驱动程序中执行。 SparkContext
是驱动程序的一部分。您不能在执行器上运行的代码中使用它。
【讨论】:
我尝试在函数_getHiveTypeMapping
之外使用SparkContext
。现在,当我运行 collect()
函数时,我得到低于 scala> rows.map(x => x.split(",")).map(y => (y(1),y(2),y(4))).map case (a,b,c) => (a,_getHiveTypeMapping(b,c)) .collect() res213: Array[(String, String)] = Array((EMP_HOURS,This RDD lacks a SparkContext. ...
让我换种说法:你不应该在 RDD
的转换中使用 SparkContext
或任何 RDD
。以上是关于在scala中调用collect()函数时出现异常的主要内容,如果未能解决你的问题,请参考以下文章
从 Spark 连接到 BigTable 时出现 Jetty ALPN/NPN 异常,scala 代码