org.apache.spark.SparkException:任务不可序列化(由 org.apache.hadoop.conf.Configuration 引起)
Posted
技术标签:
【中文标题】org.apache.spark.SparkException:任务不可序列化(由 org.apache.hadoop.conf.Configuration 引起)【英文标题】:org.apache.spark.SparkException: Task not serializable (Caused by org.apache.hadoop.conf.Configuration) 【发布时间】:2016-10-31 03:52:39 【问题描述】:我想将转换后的流写入 Elasticsearch 索引,如下所示:
transformed.foreachRDD(rdd =>
if (!rdd.isEmpty())
val messages = rdd.map(prepare)
messages.saveAsNewAPIHadoopFile("-", classOf[NullWritable], classOf[MapWritable], classOf[EsOutputFormat], ec)
)
val messages = rdd.map(prepare)
行抛出错误(见下文)。我一直在尝试不同的方法来解决这个问题(例如在val conf
旁边添加@transient
),但似乎没有任何效果。
6/06/28 19:23:00 错误 JobScheduler:运行作业流作业时出错 1467134580000 ms.0 org.apache.spark.SparkException:任务不 可序列化在 org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304) 在 org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294) 在 org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122) 在 org.apache.spark.SparkContext.clean(SparkContext.scala:2055) 在 org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324) 在 org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) 在 org.apache.spark.rdd.RDD.withScope(RDD.scala:316) 在 org.apache.spark.rdd.RDD.map(RDD.scala:323) 在 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1.apply(EsStream.scala:77) 在 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1.apply(EsStream.scala:75) 在 org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) 在 scala.util.Try$.apply(Try.scala:161) 在 org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) 在 scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223) 在 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 在 java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) 在 java.lang.Thread.run(Thread.java:745) 引起: java.io.NotSerializableException:org.apache.hadoop.conf.Configuration 序列化栈: - 对象不可序列化(类:org.apache.hadoop.conf.Configuration,值:配置: 核心-default.xml,核心-site.xml,mapred-default.xml,mapred-site.xml, 纱-default.xml,纱-site.xml) - 字段(类:de.kp.spark.elastic.stream.EsStream,名称:de$kp$spark$elastic$stream$EsStream$$conf,类型:类 org.apache.hadoop.conf.配置) - 对象(de.kp.spark.elastic.stream.EsStream 类,de.kp.spark.elastic.stream.EsStream@6b156e9a) - 字段(类:de.kp.spark.elastic.stream.EsStream$$anonfun$run$1,名称:$outer,类型:类 de.kp.spark.elastic.stream.EsStream) - 对象(de.kp.spark.elastic.stream.EsStream$$anonfun$run$1 类,) - 字段(类:de.kp.spark.elastic.stream.EsStream$$anonfun$run$1$$anonfun$2,名称: $外部,类型:类 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1) - 对象(de.kp.spark.elastic.stream.EsStream$$anonfun$run$1$$anonfun$2 类, ) 在 org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40) 在 org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) 在 org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101) 在 org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301) ... 30 更多线程“主”中的异常 org.apache.spark.SparkException:任务不可序列化 org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304) 在 org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294) 在 org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122) 在 org.apache.spark.SparkContext.clean(SparkContext.scala:2055) 在 org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324) 在 org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111) 在 org.apache.spark.rdd.RDD.withScope(RDD.scala:316) 在 org.apache.spark.rdd.RDD.map(RDD.scala:323) 在 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1.apply(EsStream.scala:77) 在 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1.apply(EsStream.scala:75) 在 org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:49) 在 scala.util.Try$.apply(Try.scala:161) 在 org.apache.spark.streaming.scheduler.Job.run(Job.scala:39) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:224) 在 scala.util.DynamicVariable.withValue(DynamicVariable.scala:57) 在 org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:223) 在 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 在 java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) 在 java.lang.Thread.run(Thread.java:745) 引起: java.io.NotSerializableException:org.apache.hadoop.conf.Configuration 序列化栈: - 对象不可序列化(类:org.apache.hadoop.conf.Configuration,值:配置: 核心-default.xml,核心-site.xml,mapred-default.xml,mapred-site.xml, 纱-default.xml,纱-site.xml) - 字段(类:de.kp.spark.elastic.stream.EsStream,名称:de$kp$spark$elastic$stream$EsStream$$conf,类型:类 org.apache.hadoop.conf.配置) - 对象(de.kp.spark.elastic.stream.EsStream 类,de.kp.spark.elastic.stream.EsStream@6b156e9a) - 字段(类:de.kp.spark.elastic.stream.EsStream$$anonfun$run$1,名称:$outer,类型:类 de.kp.spark.elastic.stream.EsStream) - 对象(de.kp.spark.elastic.stream.EsStream$$anonfun$run$1 类,) - 字段(类:de.kp.spark.elastic.stream.EsStream$$anonfun$run$1$$anonfun$2,名称: $外部,类型:类 de.kp.spark.elastic.stream.EsStream$$anonfun$run$1) - 对象(de.kp.spark.elastic.stream.EsStream$$anonfun$run$1$$anonfun$2 类, ) 在 org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40) 在 org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) 在 org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101) 在 org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301) ... 30 更多
它是否与 Hadoop 的配置有关? (我参考这条消息:class: org.apache.hadoop.conf.Configuration, value: Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml
)
更新:
class EsStream(name:String,conf:HConf) extends SparkBase with Serializable
/* Elasticsearch configuration */
val ec = getEsConf(conf)
/* Kafka configuration */
val (kc,topics) = getKafkaConf(conf)
def run()
val ssc = createSSCLocal(name,conf)
/*
* The KafkaInputDStream returns a Tuple where only the second component
* holds the respective message; we therefore reduce to a DStream[String]
*/
val stream = KafkaUtils.createStream[String,String,StringDecoder,StringDecoder](ssc,kc,topics,StorageLevel.MEMORY_AND_DISK).map(_._2)
/*
* Inline transformation of the incoming stream by any function that maps
* a DStream[String] onto a DStream[String]
*/
val transformed = transform(stream)
/*
* Write transformed stream to Elasticsearch index
*/
transformed.foreachRDD(rdd =>
if (!rdd.isEmpty())
val messages = rdd.map(prepare)
messages.saveAsNewAPIHadoopFile("-", classOf[NullWritable], classOf[MapWritable], classOf[EsOutputFormat], ec)
)
ssc.start()
ssc.awaitTermination()
def transform(stream:DStream[String]) = stream
private def getEsConf(config:HConf):HConf =
val _conf = new HConf()
_conf.set("es.nodes", conf.get("es.nodes"))
_conf.set("es.port", conf.get("es.port"))
_conf.set("es.resource", conf.get("es.resource"))
_conf
private def getKafkaConf(config:HConf):(Map[String,String],Map[String,Int]) =
val cfg = Map(
"group.id" -> conf.get("kafka.group"),
"zookeeper.connect" -> conf.get("kafka.zklist"),
"zookeeper.connection.timeout.ms" -> conf.get("kafka.timeout")
)
val topics = conf.get("kafka.topics").split(",").map((_,conf.get("kafka.threads").toInt)).toMap
(cfg,topics)
private def prepare(message:String):(Object,Object) =
val m = JSON.parseFull(message) match
case Some(map) => map.asInstanceOf[Map[String,String]]
case None => Map.empty[String,String]
val kw = NullWritable.get
val vw = new MapWritable
for ((k, v) <- m) vw.put(new Text(k), new Text(v))
(kw, vw)
【问题讨论】:
org.apache.hadoop.conf.Configuration 类的对象似乎被全局声明为一个字段。尝试将其本地化。 @amit_kumar:谢谢。我刚刚发布了完整的课程。您能否指出我应该在哪里将 org.apache.hadoop.conf.Configuration 设为本地? 什么是 HConf?这导致了问题。检查它是否可序列化。 @amit_kumar:来自org.apache.hadoop.conf.Configuration => HBase
,其中public class Configuration implements Iterable<Map.Entry<String,String>>, Writable ...
【参考方案1】:
从EsStream
的类构造函数中去掉conf:HConf
,写成class EsStream(name:String)
。
接下来创建一个带有签名的方法:public def init(conf:HConf):Map(String,String)
在此方法中,您将读取所需的配置并在其中更新ec
和(kc,topics)
。
在此之后,您应该调用您的 run 方法。
【讨论】:
以上是关于org.apache.spark.SparkException:任务不可序列化(由 org.apache.hadoop.conf.Configuration 引起)的主要内容,如果未能解决你的问题,请参考以下文章