如何将张量板可视化集成到 tf.Estimator?

Posted

技术标签:

【中文标题】如何将张量板可视化集成到 tf.Estimator?【英文标题】:How can I integrate tensorboard visualization to tf.Estimator? 【发布时间】:2019-07-08 12:46:17 【问题描述】:

我有用于识别手写数字 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/tutorials/mnist/mnist_with_summaries.py 的经典 TensorFlow 代码,使用 tf.Estimator。我的问题很复杂,由两个问题组成

    我是否应该在代码中为目标变量编写 tf.summary() 以在 Tensoboard 中可视化数据,只需键入 tensorboard -- logdir=/tmp/mnist_convnet_model 或 tf.Estimator 自动收集 */tmp/mnist_convnet_model 目录中的所有摘要,我可以调用 tensorboard -- logdir=/tmp/mnist_convnet_model ?

    如果我必须写tf.summary(),你能回答我吗,我应该在代码中插入代码tf summary merge_all()吗?在哪一段代码中?

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import tensorflow as tf

tf.logging.set_verbosity(tf.logging.INFO)


def cnn_model_fn(features, labels, mode):
  """Model function for CNN."""
  # Input Layer
  input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])

  # Convolutional Layer #1
  conv1 = tf.layers.conv2d(
      inputs=input_layer,
      filters=32,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #1
  pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)

  # Convolutional Layer #2
  conv2 = tf.layers.conv2d(
      inputs=pool1,
      filters=64,
      kernel_size=[5, 5],
      padding="same",
      activation=tf.nn.relu)

  # Pooling Layer #2
  pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)

  # Flatten tensor into a batch of vectors
  pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])

  # Dense Layer
  dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)

  # Add dropout operation; 0.6 probability that element will be kept
  dropout = tf.layers.dropout(
      inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN)

  # Logits layer
  # Input Tensor Shape: [batch_size, 1024]
  # Output Tensor Shape: [batch_size, 10]
  logits = tf.layers.dense(inputs=dropout, units=10)

  predictions = 
      # Generate predictions (for PREDICT and EVAL mode)
      "classes": tf.argmax(input=logits, axis=1),
      # Add `softmax_tensor` to the graph. It is used for PREDICT and by the
      # `logging_hook`.
      "probabilities": tf.nn.softmax(logits, name="softmax_tensor")
  
  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate Loss (for both TRAIN and EVAL modes)
  loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)

  # Configure the Training Op (for TRAIN mode)
  if mode == tf.estimator.ModeKeys.TRAIN:
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
    train_op = optimizer.minimize(
        loss=loss,
        global_step=tf.train.get_global_step())
    return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)

  # Add evaluation metrics (for EVAL mode)
  eval_metric_ops = 
      "accuracy": tf.metrics.accuracy(
          labels=labels, predictions=predictions["classes"])
  return tf.estimator.EstimatorSpec(
      mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)


def main(unused_argv):
  # Load training and eval data
  mnist = tf.contrib.learn.datasets.load_dataset("mnist")
  train_data = mnist.train.images  # Returns np.array
  train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
  eval_data = mnist.test.images  # Returns np.array
  eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)

  # Create the Estimator
  mnist_classifier = tf.estimator.Estimator(
      model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model")

  # Set up logging for predictions
  # Log the values in the "Softmax" tensor with label "probabilities"
  tensors_to_log = "probabilities": "softmax_tensor"
  logging_hook = tf.train.LoggingTensorHook(
      tensors=tensors_to_log, every_n_iter=50)

  # Train the model
  train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x="x": train_data,
      y=train_labels,
      batch_size=100,
      num_epochs=None,
      shuffle=True)
  mnist_classifier.train(
      input_fn=train_input_fn,
      steps=20000,
      hooks=[logging_hook])

  # Evaluate the model and print results
  eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
      x="x": eval_data, y=eval_labels, num_epochs=1, shuffle=False)
  eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
  print(eval_results)

if __name__ == "__main__":
  tf.app.run()

【问题讨论】:

【参考方案1】:

通常,您只需在代码中的任意位置指定tf.summary.scalar()tf.summary.histogram()tf.summary.image()。您可以通过以下方式使用直方图摘要来捕获所有权重和偏差

for value in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
    tf.summary.histogram(value.name, value)

至于可更新的指标摘要,例如f1分数的准确性,你需要将其包裹在eval_metric_ops中并传递给tf.estimator.EstimatorSpec

accuracy = tf.metrics.accuracy(labels=labels, predictions=predictions)
    eval_metric_ops = 'accuracy': accuracy
    您可以使用您在训练期间指定的相同目录调用 tensorboard。 你不需要使用tf.summary.merge_all()

【讨论】:

以上是关于如何将张量板可视化集成到 tf.Estimator?的主要内容,如果未能解决你的问题,请参考以下文章

使用张量板查找 DNNRegressor 的准确性

张量板中的线图

如何在一台机器上保存张量板投影仪检查点文件并在另一台机器上打开?

tf.Estimator - 将 TensorBoard 日志路由到与模型目录不同的目录

Tensorflow在Python中导出和重用Estimator对象

如何在每个时期评估测试数据集的张量流估计器