“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段

Posted

技术标签:

【中文标题】“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段【英文标题】:"object_detection.protos.SsdFeatureExtractor" has no field named "use_depthwise" 【发布时间】:2019-02-06 11:12:17 【问题描述】:

我想使用 ssd_mobilenet_v2_coco_2018_03_29 训练我的 tensorflow 对象检测模型。当我运行训练步骤时:

python object_detection/train.py --logtostderr--train_dir=train         
--pipeline_config_path=ssd_mobilenet_v2_coco_2018_03_29/pipeline.config

它抛出

Traceback (most recent call last):
File "object_detection/train.py", line 198, in <module>
tf.app.run()
File "/home/user/tensor/lib/python3.5/site- 
packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
 File "object_detection/train.py", line 143, in main
model_config, train_config, input_config = 
get_configs_from_pipeline_file()
File "object_detection/train.py", line 103, in 
get_configs_from_pipeline_file
text_format.Merge(f.read(), pipeline_config)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 536, in Merge
descriptor_pool=descriptor_pool)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 590, in MergeLines
return parser.MergeLines(lines, message)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 623, in MergeLines
 self._ParseOrMerge(lines, message)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 638, in _ParseOrMerge
self._MergeField(tokenizer, message)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 763, in _MergeField
merger(tokenizer, message, field)
File "/home/user/tensor/lib/python3.5/site- 
packages/google/protobuf/text_format.py", line 837,in _ 

google.protobuf.text_format.ParseError: 80:7 : Message type 
"object_detection.protos.SsdFeatureExtractor" has no field named 
 "use_depthwise".

我的配置文件:


model 
  ssd 
    num_classes: 2
    box_coder 
      faster_rcnn_box_coder 
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      
    
    matcher 
      argmax_matcher 
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      
    
    similarity_calculator 
      iou_similarity 
      
    
    anchor_generator 
      ssd_anchor_generator 
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      
    
    image_resizer 
      fixed_shape_resizer 
        height: 300
        width: 300
      
    
    box_predictor 
      convolutional_box_predictor 
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams 
          activation: RELU_6,
          regularizer 
            l2_regularizer 
              weight: 0.00004
            
          
          initializer 
            truncated_normal_initializer 
              stddev: 0.03
              mean: 0.0
            
          
          batch_norm 
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          
        
      
    
    feature_extractor 
      type: 'ssd_mobilenet_v2'
      min_depth: 16
      depth_multiplier: 1.0
      use_depthwise: true
      conv_hyperparams 
        activation: RELU_6,
        regularizer 
          l2_regularizer 
            weight: 0.00004
          
        
        initializer 
          truncated_normal_initializer 
            stddev: 0.03
            mean: 0.0
          
        
        batch_norm 
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        
      
    
    loss 
      classification_loss 
        weighted_sigmoid 
                anchorwise_output: true
        
      
      localization_loss 
        weighted_smooth_l1 
                anchorwise_output: true
        
      
      hard_example_miner 
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 3
      
      classification_weight: 1.0
      localization_weight: 1.0
    
    normalize_loss_by_num_matches: true
    post_processing 
      batch_non_max_suppression 
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      
      score_converter: SIGMOID
    
  


train_config: 
  batch_size: 24
  optimizer 
    rms_prop_optimizer: 
      learning_rate: 
        exponential_decay_learning_rate 
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        
      
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    
  
  fine_tune_checkpoint: "ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
  num_steps: 2000
  fine_tune_checkpoint_type: "detection"

train_input_reader 
  label_map_path: "ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
  tf_record_input_reader 
    input_path: "data/train.record"
  

eval_config 
  num_examples: 8000
  max_evals: 10
  use_moving_averages: false

eval_input_reader 
  label_map_path: "ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
  shuffle: false
  num_readers: 1
  tf_record_input_reader 
    input_path: "data/val.record"
  

我在这里使用 2 个类。 我从https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v2_coco.config 复制了配置文件 我的 TensorFlow 版本:1.12.0 protobuf:3.6.1

【问题讨论】:

【参考方案1】:

如果您编译的原型来自旧版本,则可能会发生这种情况。确保您的 proto 文件(在 /proto 下)是最新的,然后按照以下步骤重新编译它们:

cd path/to/models/research/
protoc object_detection/protos/*.proto --python_out=.

重新编译原型后再次尝试训练。

【讨论】:

以上是关于“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段的主要内容,如果未能解决你的问题,请参考以下文章

报错google.protobuf.text_format.ParseError: 166:8 : Message type "object_detection.protos.RandomH

如何解决导入object_detection / protos / image_resizer.proto但未使用protobuf编译的问题

终端Linux - 引用可执行文件 - 没有这样的文件或目录

找不到`protoc`命令

TensorFlow - 对象检测模块,尝试使用 protoc 时出现错误