“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段
Posted
技术标签:
【中文标题】“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段【英文标题】:"object_detection.protos.SsdFeatureExtractor" has no field named "use_depthwise" 【发布时间】:2019-02-06 11:12:17 【问题描述】:我想使用 ssd_mobilenet_v2_coco_2018_03_29 训练我的 tensorflow 对象检测模型。当我运行训练步骤时:
python object_detection/train.py --logtostderr--train_dir=train
--pipeline_config_path=ssd_mobilenet_v2_coco_2018_03_29/pipeline.config
它抛出
Traceback (most recent call last):
File "object_detection/train.py", line 198, in <module>
tf.app.run()
File "/home/user/tensor/lib/python3.5/site-
packages/tensorflow/python/platform/app.py", line 125, in run
_sys.exit(main(argv))
File "object_detection/train.py", line 143, in main
model_config, train_config, input_config =
get_configs_from_pipeline_file()
File "object_detection/train.py", line 103, in
get_configs_from_pipeline_file
text_format.Merge(f.read(), pipeline_config)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 536, in Merge
descriptor_pool=descriptor_pool)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 590, in MergeLines
return parser.MergeLines(lines, message)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 623, in MergeLines
self._ParseOrMerge(lines, message)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 638, in _ParseOrMerge
self._MergeField(tokenizer, message)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 763, in _MergeField
merger(tokenizer, message, field)
File "/home/user/tensor/lib/python3.5/site-
packages/google/protobuf/text_format.py", line 837,in _
google.protobuf.text_format.ParseError: 80:7 : Message type
"object_detection.protos.SsdFeatureExtractor" has no field named
"use_depthwise".
我的配置文件:
model
ssd
num_classes: 2
box_coder
faster_rcnn_box_coder
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
matcher
argmax_matcher
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
similarity_calculator
iou_similarity
anchor_generator
ssd_anchor_generator
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
image_resizer
fixed_shape_resizer
height: 300
width: 300
box_predictor
convolutional_box_predictor
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams
activation: RELU_6,
regularizer
l2_regularizer
weight: 0.00004
initializer
truncated_normal_initializer
stddev: 0.03
mean: 0.0
batch_norm
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
feature_extractor
type: 'ssd_mobilenet_v2'
min_depth: 16
depth_multiplier: 1.0
use_depthwise: true
conv_hyperparams
activation: RELU_6,
regularizer
l2_regularizer
weight: 0.00004
initializer
truncated_normal_initializer
stddev: 0.03
mean: 0.0
batch_norm
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
loss
classification_loss
weighted_sigmoid
anchorwise_output: true
localization_loss
weighted_smooth_l1
anchorwise_output: true
hard_example_miner
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 3
classification_weight: 1.0
localization_weight: 1.0
normalize_loss_by_num_matches: true
post_processing
batch_non_max_suppression
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
score_converter: SIGMOID
train_config:
batch_size: 24
optimizer
rms_prop_optimizer:
learning_rate:
exponential_decay_learning_rate
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
fine_tune_checkpoint: "ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
num_steps: 2000
fine_tune_checkpoint_type: "detection"
train_input_reader
label_map_path: "ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
tf_record_input_reader
input_path: "data/train.record"
eval_config
num_examples: 8000
max_evals: 10
use_moving_averages: false
eval_input_reader
label_map_path: "ssd_mobilenet_v2_coco_2018_03_29/label_map.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader
input_path: "data/val.record"
我在这里使用 2 个类。 我从https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v2_coco.config 复制了配置文件 我的 TensorFlow 版本:1.12.0 protobuf:3.6.1
【问题讨论】:
【参考方案1】:如果您编译的原型来自旧版本,则可能会发生这种情况。确保您的 proto 文件(在 /proto 下)是最新的,然后按照以下步骤重新编译它们:
cd path/to/models/research/
protoc object_detection/protos/*.proto --python_out=.
重新编译原型后再次尝试训练。
【讨论】:
以上是关于“object_detection.protos.SsdFeatureExtractor”没有名为“use_depthwise”的字段的主要内容,如果未能解决你的问题,请参考以下文章
报错google.protobuf.text_format.ParseError: 166:8 : Message type "object_detection.protos.RandomH
如何解决导入object_detection / protos / image_resizer.proto但未使用protobuf编译的问题