BigQuery 使用从宽到长的结构重塑表
Posted
技术标签:
【中文标题】BigQuery 使用从宽到长的结构重塑表【英文标题】:BigQuery reshape table with structs from wide to long 【发布时间】:2019-11-09 05:13:34 【问题描述】:删除了此帖子的先前版本,以代替此带有可重现示例的清理帖子。我有以下格式的表格:
WITH wide_stats AS (
(
SELECT
'joe' name, 'bills' team,
struct(struct(7 as fga) as o, struct(8 as fga) as d) as t1,
struct(struct(3 as fga) as o, struct(9 as fga) as d) as t2,
struct(3 as pts, 9 as ast, 5 as reb) as t3,
7 tov, 3 blk
) UNION ALL (
SELECT 'nick' name, 'jets' team,
struct(struct(12 as fga) as o, struct(13 as fga) as d) as t1,
struct(struct(15 as fga) as o, struct(22 as fga) as d) as t2,
struct(13 as pts, 5 as ast, 15 as reb) as t3,
75 tov, 23 blk
)
)
SELECT
name, team, metric, SAFE_CAST(value AS FLOAT64) value
FROM (
SELECT
name, team,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(0)], r'^"|"$', '') metric,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(1)], r'^"|"$', '') value
FROM wide_stats,
UNNEST(SPLIT(REGEXP_REPLACE(to_json_string(wide_stats), r'|', ''))) pair
)
WHERE NOT LOWER(metric) IN ('name', 'team')
我正在努力将表格重塑为以下输出:
name team metric value
joe bills t1_o_fga 7
joe bills t1_d_fga 8
joe bills t2_o_fga 3
joe bills t2_d_fga 9
joe bills t3_pts 3
joe bills t3_ast 9
joe bills t3_reb 5
joe bills tov 7
joe bills blk 3
nick jets t1_o_fga 12
nick jets t1_d_fga 13
nick jets t2_o_fga 15
nick jets t2_d_fga 22
nick jets t3_pts 13
nick jets t3_ast 5
nick jets t3_reb 15
nick jets tov 75
nick jets blk 23
这个任务很容易解释 - 从宽到长,但在表中使用 struct
和嵌套的 struct
s。我在另一个 stackoveflow 帖子中的正则表达式工作是以错误的方式拆分列名,并且当前输出与它需要的不匹配。
行的顺序无关紧要。有了名字,不管它是 t1_o_fga 还是 t1-o-fga 还是 t1/o/fga,只要有一些分隔符并且清楚变量是什么。非常感谢任何帮助或指导,谢谢!
【问题讨论】:
一个在不使用 UDF 的情况下模拟 pandas.melt() 函数的查询:***.com/a/62057616/13632099 【参考方案1】:以下是 BigQuery 标准 SQL
#standardSQL
WITH wide_stats AS (
SELECT 'joe' name, 'bills' team,
STRUCT(STRUCT(7 AS fga) AS o, STRUCT(8 AS fga) AS d) AS t1,
STRUCT(STRUCT(3 AS fga) AS o, STRUCT(9 AS fga) AS d) AS t2,
STRUCT(3 AS pts, 9 AS ast, 5 AS reb) AS t3, 7 tov, 3 blk UNION ALL
SELECT 'nick' name, 'jets' team,
STRUCT(STRUCT(12 AS fga) AS o, STRUCT(13 AS fga) AS d) AS t1,
STRUCT(STRUCT(15 AS fga) AS o, STRUCT(22 AS fga) AS d) AS t2,
STRUCT(13 AS pts, 5 AS ast, 15 AS reb) AS t3, 75 tov, 23 blk
), flat_stats AS (
SELECT name, team,
t1.o.fga AS t1_o_fga,
t1.d.fga AS t1_d_fga,
t2.o.fga AS t2_o_fga,
t2.d.fga AS t2_d_fga,
t3.pts AS t3_pts,
t3.ast AS t3_ast,
t3.reb AS t3_reb,
tov, blk
FROM wide_stats
)
SELECT name, team, metric, SAFE_CAST(value AS FLOAT64) value
FROM (
SELECT name, team,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(0)], r'^"|"$', '') metric,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(1)], r'^"|"$', '') value
FROM flat_stats,
UNNEST(SPLIT(REGEXP_REPLACE(TO_JSON_STRING(flat_stats), r'|', ''))) pair
)
WHERE NOT LOWER(metric) IN ('name', 'team')
有输出
Row name team metric value
1 joe bills t1_o_fga 7.0
2 joe bills t1_d_fga 8.0
3 joe bills t2_o_fga 3.0
4 joe bills t2_d_fga 9.0
5 joe bills t3_pts 3.0
6 joe bills t3_ast 9.0
7 joe bills t3_reb 5.0
8 joe bills tov 7.0
9 joe bills blk 3.0
10 nick jets t1_o_fga 12.0
11 nick jets t1_d_fga 13.0
12 nick jets t2_o_fga 15.0
13 nick jets t2_d_fga 22.0
14 nick jets t3_pts 13.0
15 nick jets t3_ast 5.0
16 nick jets t3_reb 15.0
17 nick jets tov 75.0
18 nick jets blk 23.0
如果由于某种原因您在手动组装 flat_stats
临时表时遇到问题 - 您可以做一个小技巧,如下所示
第 1 步 - 只需在旧模式下使用目标表 [project:dataset.flat_stats] 运行以下查询
#legacySQL
SELECT *
FROM [project:dataset.wide_stats]
“令人惊讶”,这将创建具有以下结构的表[project:dataset.flat_stats]
Row name team t1_o_fga t1_d_fga t2_o_fga t2_d_fga t3_pts t3_ast t3_reb tov blk
1 joe bills 7 8 3 9 3 9 5 7 3
2 nick jets 12 13 15 22 13 5 15 75 23
第 2 步 - 之后您可以简单地在下面运行(现在在标准 SQL 中)
#standardSQL
SELECT name, team, metric, SAFE_CAST(value AS FLOAT64) value
FROM (
SELECT name, team,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(0)], r'^"|"$', '') metric,
REGEXP_REPLACE(SPLIT(pair, ':')[OFFSET(1)], r'^"|"$', '') value
FROM `project.dataset.flat_stats` flat_stats,
UNNEST(SPLIT(REGEXP_REPLACE(TO_JSON_STRING(flat_stats), r'|', ''))) pair
)
WHERE NOT LOWER(metric) IN ('name', 'team')
【讨论】:
再次感谢您为此和今天 - 帮助了很多以上是关于BigQuery 使用从宽到长的结构重塑表的主要内容,如果未能解决你的问题,请参考以下文章
R语言使用reshape2包的melt函数将dataframe从宽表到长表(Wide- to long-format)如果没有指定行标识符号,则所有的字段都会放入variable变量中
R语言使用reshape2包的melt函数将dataframe从宽表到长表(Wide- to long-format)指定行标识符变量并自定义生成的长表的标识符列的名称