BigQuery SQL:平均值、几何平均值、去除异常值、中值
Posted
技术标签:
【中文标题】BigQuery SQL:平均值、几何平均值、去除异常值、中值【英文标题】:BigQuery SQL: Average, geometric mean, remove outliers, median 【发布时间】:2018-08-23 08:27:17 【问题描述】:我正在计算在 Stack Overflow 上获得回复的平均时间,结果毫无意义。
#standardSQL
WITH question_answers AS (
SELECT *
, timestamp_diff(answers.first, creation_date, minute) minutes
FROM (
SELECT creation_date
, (SELECT AS STRUCT MIN(creation_date) first, COUNT(*) c
FROM `bigquery-public-data.***.posts_answers` b
WHERE a.id=b.parent_id
) answers
, SPLIT(tags, '|') tags
FROM `bigquery-public-data.***.posts_questions` a
WHERE EXTRACT(year FROM creation_date) > 2015
), UNNEST(tags) tag
WHERE tag IN ('java', 'javascript', 'google-bigquery', 'firebase', 'php')
AND answers.c > 0
)
SELECT tag
, COUNT(*) questions
, ROUND(AVG(minutes), 2) first_reply_avg_minutes
FROM question_answers
GROUP BY tag
我应该如何计算平均时间?
【问题讨论】:
【参考方案1】:2019 年更新:分享一些persisted public UDFs 怎么样?
第一个,中位数:
SELECT fhoffa.x.median([1,1,1,2,3,4,5,100,1000])
3.0
确实 - 在 Stack Overflow 上获得答案的平均时间超过 100 小时(>6000 分钟)似乎是错误的 - 并且很大程度上是由异常值驱动的。
而不是做一个简单的AVG()
你可以得到:
EXP(AVG(LOG(GREATEST(minutes,1))))
去除异常值后的均值:AVG(q) FROM (SELECT q FROM QUANTILES(q, 100) LIMIT 80 OFFSET 2))
。
中位数:all_minutes[OFFSET(CAST(ARRAY_LENGTH(all_minutes)/2 AS INT64))]
如果您使用这些替代方案,结果会更有意义:
正如您在此处看到的那样,在这种情况下,去除异常值会得到类似于几何平均值的结果 - 而中位数报告的数字甚至更低。使用哪一个?您的选择。
WITH question_answers AS (
SELECT *
, timestamp_diff(answers.first, creation_date, minute) minutes
FROM (
SELECT creation_date
, (SELECT AS STRUCT MIN(creation_date) first, COUNT(*) c
FROM `bigquery-public-data.***.posts_answers` b
WHERE a.id=b.parent_id
) answers
, SPLIT(tags, '|') tags
FROM `bigquery-public-data.***.posts_questions` a
WHERE EXTRACT(year FROM creation_date) > 2015
), UNNEST(tags) tag
WHERE tag IN ('java', 'javascript', 'google-bigquery', 'firebase', 'php', 'sql', 'elasticsearch', 'apache-kafka', 'tensorflow')
AND answers.c > 0
)
SELECT * EXCEPT(qs, all_minutes)
, (SELECT ROUND(AVG(q),2) FROM (SELECT q FROM UNNEST(qs) q ORDER BY q LIMIT 80 OFFSET 2)) avg_no_outliers
, all_minutes[OFFSET(CAST(ARRAY_LENGTH(all_minutes)/2 AS INT64) )] median_minutes
FROM (
SELECT tag
, COUNT(*) questions
, ROUND(AVG(minutes), 2) avg_minutes
, ROUND(EXP(AVG(LOG(GREATEST(minutes,1)))),2) first_reply_avg_minutes_geom
, APPROX_QUANTILES(minutes, 100) qs
, ARRAY_AGG(minutes IGNORE NULLS ORDER BY minutes) all_minutes
FROM question_answers
GROUP BY tag
)
ORDER BY 2 DESC
奖金MEDIAN()
UDF function from Elliott。
CREATE TEMP FUNCTION MEDIAN(arr ANY TYPE) AS ((
SELECT
IF(
MOD(ARRAY_LENGTH(arr), 2) = 0,
(arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2) - 1)] + arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2))]) / 2,
arr[OFFSET(DIV(ARRAY_LENGTH(arr), 2))]
)
FROM (SELECT ARRAY_AGG(x ORDER BY x) AS arr FROM UNNEST(arr) AS x)
));
【讨论】:
您使用的中位数是离散的,不是插值/连续的,因此可能低于真正的中位数但可能不显着,可能在标准 SQL 中使用PERCENTILE_CONT(x, 0.5) OVER() AS median
更好,请参阅cloud.google.com/bigquery/docs/reference/standard-sql/…跨度>
您排除异常值的方式假设是右偏分布;给定响应时间的公平假设类似于延迟建模/持续时间分析。它可能类似于广义 gamma 分布,但在考虑使用哪种集中趋势度量之前,值得将这些百分位数分箱并绘制图表以大致了解分布的样子。使用集中趋势(如中位数)和规模(如 MAD 而不是 StdDev)的稳健测量已经减少了异常值的影响。将异常值修剪到百分位数 3-83 会去除很多尾巴!
请您解释一下为什么您选择在 3-83 之间修剪分位数,这不会影响结果以获得受分位数最低值影响的平均值吗?为什么不使用除第一个和最后一个分位数之外的全部范围?其中仅包括极值...以上是关于BigQuery SQL:平均值、几何平均值、去除异常值、中值的主要内容,如果未能解决你的问题,请参考以下文章