SPARK SQL - 使用 DataFrames 和 JDBC 更新 MySql 表
Posted
技术标签:
【中文标题】SPARK SQL - 使用 DataFrames 和 JDBC 更新 MySql 表【英文标题】:SPARK SQL - update MySql table using DataFrames and JDBC 【发布时间】:2016-06-08 16:09:18 【问题描述】:我正在尝试使用 Spark SQL DataFrames 和 JDBC 连接在 mysql 上插入和更新一些数据。
我已成功使用 SaveMode.Append 插入新数据。有没有办法从 Spark SQL 更新 MySql Table 中已经存在的数据?
我要插入的代码是:
myDataFrame.write.mode(SaveMode.Append).jdbc(JDBCurl,mySqlTable,connectionProperties)
如果我更改为 SaveMode.Overwrite,它会删除整个表并创建一个新表,我正在寻找类似 MySql 中可用的“ON DUPLICATE KEY UPDATE”之类的东西
【问题讨论】:
【参考方案1】:这是不可能的。至于现在(Spark 1.6.0 / 2.2.0 SNAPSHOT)Spark DataFrameWriter
只支持四种写入模式:
SaveMode.Overwrite
:覆盖现有数据。SaveMode.Append
:追加数据。SaveMode.Ignore
:忽略操作(即无操作)。SaveMode.ErrorIfExists
:默认选项,运行时抛出异常。
您可以手动插入,例如使用 mapPartitions
(因为您希望 UPSERT 操作应该是幂等的并且易于实现)、写入临时表并手动执行 upsert,或使用触发器。
一般来说,为批处理操作实现 upsert 行为并保持良好的性能绝非易事。您必须记住,通常情况下会有多个并发事务(每个分区一个),因此您必须确保不会出现写入冲突(通常通过使用特定于应用程序的分区)或提供适当的恢复过程。在实践中,执行和批量写入临时表并直接在数据库中解析 upsert 部分可能会更好。
【讨论】:
【参考方案2】:zero323 的回答是对的,我只是想补充一点,您可以使用 JayDeBeApi 包来解决此问题: https://pypi.python.org/pypi/JayDeBeApi/
更新 mysql 表中的数据。由于您已经安装了 mysql jdbc 驱动程序,因此这可能是一个容易实现的目标。
JayDeBeApi 模块允许您从 Python 代码连接到 使用 Java JDBC 的数据库。它为此提供了一个 Python DB-API v2.0 数据库。
我们使用 Python 的 Anaconda 发行版,JayDeBeApi python 包是标准的。
请参阅上面该链接中的示例。
【讨论】:
【参考方案3】:遗憾的是,Spark 中没有 SaveMode.Upsert
模式,用于像 upserting 这样非常常见的情况。
zero322 总的来说是对的,但我认为应该可以(在性能上有所妥协)提供这种替换功能。
我还想为此案例提供一些 java 代码。 当然,它的性能不如 spark 的内置产品 - 但它应该是满足您要求的良好基础。只需根据您的需要进行修改:
myDF.repartition(20); //one connection per partition, see below
myDF.foreachPartition((Iterator<Row> t) ->
Connection conn = DriverManager.getConnection(
Constants.DB_JDBC_CONN,
Constants.DB_JDBC_USER,
Constants.DB_JDBC_PASS);
conn.setAutoCommit(true);
Statement statement = conn.createStatement();
final int batchSize = 100000;
int i = 0;
while (t.hasNext())
Row row = t.next();
try
// better than REPLACE INTO, less cycles
statement.addBatch(("INSERT INTO mytable " + "VALUES ("
+ "'" + row.getAs("_id") + "',
+ "'" + row.getStruct(1).get(0) + "'
+ "') ON DUPLICATE KEY UPDATE _id='" + row.getAs("_id") + "';"));
//conn.commit();
if (++i % batchSize == 0)
statement.executeBatch();
catch (SQLIntegrityConstraintViolationException e)
//should not occur, nevertheless
//conn.commit();
catch (SQLException e)
e.printStackTrace();
finally
//conn.commit();
statement.executeBatch();
int[] ret = statement.executeBatch();
System.out.println("Ret val: " + Arrays.toString(ret));
System.out.println("Update count: " + statement.getUpdateCount());
//conn.commit();
statement.close();
conn.close();
【讨论】:
这对我来说效果很好。我必须做的一个小修正是在statement.close();
之前注释掉conn.commit();
行。否则,它会抛出这个错误java-sql-sqlexception-cant-call-commit-when-autocommit-true
。【参考方案4】:
将org.apache.spark.sql.execution.datasources.jdbc
JdbcUtils.scala
insert into
覆盖为replace into
import java.sql.Connection, Driver, DriverManager, PreparedStatement, ResultSet, SQLException
import scala.collection.JavaConverters._
import scala.util.control.NonFatal
import com.typesafe.scalalogging.Logger
import org.apache.spark.sql.catalyst.InternalRow
import org.apache.spark.sql.execution.datasources.jdbc.DriverRegistry, DriverWrapper, JDBCOptions
import org.apache.spark.sql.jdbc.JdbcDialect, JdbcDialects, JdbcType
import org.apache.spark.sql.types._
import org.apache.spark.sql.DataFrame, Row
/**
* Util functions for JDBC tables.
*/
object UpdateJdbcUtils
val logger = Logger(this.getClass)
/**
* Returns a factory for creating connections to the given JDBC URL.
*
* @param options - JDBC options that contains url, table and other information.
*/
def createConnectionFactory(options: JDBCOptions): () => Connection =
val driverClass: String = options.driverClass
() =>
DriverRegistry.register(driverClass)
val driver: Driver = DriverManager.getDrivers.asScala.collectFirst
case d: DriverWrapper if d.wrapped.getClass.getCanonicalName == driverClass => d
case d if d.getClass.getCanonicalName == driverClass => d
.getOrElse
throw new IllegalStateException(
s"Did not find registered driver with class $driverClass")
driver.connect(options.url, options.asConnectionProperties)
/**
* Returns a PreparedStatement that inserts a row into table via conn.
*/
def insertStatement(conn: Connection, table: String, rddSchema: StructType, dialect: JdbcDialect)
: PreparedStatement =
val columns = rddSchema.fields.map(x => dialect.quoteIdentifier(x.name)).mkString(",")
val placeholders = rddSchema.fields.map(_ => "?").mkString(",")
val sql = s"REPLACE INTO $table ($columns) VALUES ($placeholders)"
conn.prepareStatement(sql)
/**
* Retrieve standard jdbc types.
*
* @param dt The datatype (e.g. [[org.apache.spark.sql.types.StringType]])
* @return The default JdbcType for this DataType
*/
def getCommonJDBCType(dt: DataType): Option[JdbcType] =
dt match
case IntegerType => Option(JdbcType("INTEGER", java.sql.Types.INTEGER))
case LongType => Option(JdbcType("BIGINT", java.sql.Types.BIGINT))
case DoubleType => Option(JdbcType("DOUBLE PRECISION", java.sql.Types.DOUBLE))
case FloatType => Option(JdbcType("REAL", java.sql.Types.FLOAT))
case ShortType => Option(JdbcType("INTEGER", java.sql.Types.SMALLINT))
case ByteType => Option(JdbcType("BYTE", java.sql.Types.TINYINT))
case BooleanType => Option(JdbcType("BIT(1)", java.sql.Types.BIT))
case StringType => Option(JdbcType("TEXT", java.sql.Types.CLOB))
case BinaryType => Option(JdbcType("BLOB", java.sql.Types.BLOB))
case TimestampType => Option(JdbcType("TIMESTAMP", java.sql.Types.TIMESTAMP))
case DateType => Option(JdbcType("DATE", java.sql.Types.DATE))
case t: DecimalType => Option(
JdbcType(s"DECIMAL($t.precision,$t.scale)", java.sql.Types.DECIMAL))
case _ => None
private def getJdbcType(dt: DataType, dialect: JdbcDialect): JdbcType =
dialect.getJDBCType(dt).orElse(getCommonJDBCType(dt)).getOrElse(
throw new IllegalArgumentException(s"Can't get JDBC type for $dt.simpleString"))
// A `JDBCValueGetter` is responsible for getting a value from `ResultSet` into a field
// for `MutableRow`. The last argument `Int` means the index for the value to be set in
// the row and also used for the value in `ResultSet`.
private type JDBCValueGetter = (ResultSet, InternalRow, Int) => Unit
// A `JDBCValueSetter` is responsible for setting a value from `Row` into a field for
// `PreparedStatement`. The last argument `Int` means the index for the value to be set
// in the SQL statement and also used for the value in `Row`.
private type JDBCValueSetter = (PreparedStatement, Row, Int) => Unit
/**
* Saves a partition of a DataFrame to the JDBC database. This is done in
* a single database transaction (unless isolation level is "NONE")
* in order to avoid repeatedly inserting data as much as possible.
*
* It is still theoretically possible for rows in a DataFrame to be
* inserted into the database more than once if a stage somehow fails after
* the commit occurs but before the stage can return successfully.
*
* This is not a closure inside saveTable() because apparently cosmetic
* implementation changes elsewhere might easily render such a closure
* non-Serializable. Instead, we explicitly close over all variables that
* are used.
*/
def savePartition(
getConnection: () => Connection,
table: String,
iterator: Iterator[Row],
rddSchema: StructType,
nullTypes: Array[Int],
batchSize: Int,
dialect: JdbcDialect,
isolationLevel: Int): Iterator[Byte] =
val conn = getConnection()
var committed = false
var finalIsolationLevel = Connection.TRANSACTION_NONE
if (isolationLevel != Connection.TRANSACTION_NONE)
try
val metadata = conn.getMetaData
if (metadata.supportsTransactions())
// Update to at least use the default isolation, if any transaction level
// has been chosen and transactions are supported
val defaultIsolation = metadata.getDefaultTransactionIsolation
finalIsolationLevel = defaultIsolation
if (metadata.supportsTransactionIsolationLevel(isolationLevel))
// Finally update to actually requested level if possible
finalIsolationLevel = isolationLevel
else
logger.warn(s"Requested isolation level $isolationLevel is not supported; " +
s"falling back to default isolation level $defaultIsolation")
else
logger.warn(s"Requested isolation level $isolationLevel, but transactions are unsupported")
catch
case NonFatal(e) => logger.warn("Exception while detecting transaction support", e)
val supportsTransactions = finalIsolationLevel != Connection.TRANSACTION_NONE
try
if (supportsTransactions)
conn.setAutoCommit(false) // Everything in the same db transaction.
conn.setTransactionIsolation(finalIsolationLevel)
val stmt = insertStatement(conn, table, rddSchema, dialect)
val setters: Array[JDBCValueSetter] = rddSchema.fields.map(_.dataType)
.map(makeSetter(conn, dialect, _))
val numFields = rddSchema.fields.length
try
var rowCount = 0
while (iterator.hasNext)
val row = iterator.next()
var i = 0
while (i < numFields)
if (row.isNullAt(i))
stmt.setNull(i + 1, nullTypes(i))
else
setters(i).apply(stmt, row, i)
i = i + 1
stmt.addBatch()
rowCount += 1
if (rowCount % batchSize == 0)
stmt.executeBatch()
rowCount = 0
if (rowCount > 0)
stmt.executeBatch()
finally
stmt.close()
if (supportsTransactions)
conn.commit()
committed = true
Iterator.empty
catch
case e: SQLException =>
val cause = e.getNextException
if (cause != null && e.getCause != cause)
if (e.getCause == null)
e.initCause(cause)
else
e.addSuppressed(cause)
throw e
finally
if (!committed)
// The stage must fail. We got here through an exception path, so
// let the exception through unless rollback() or close() want to
// tell the user about another problem.
if (supportsTransactions)
conn.rollback()
conn.close()
else
// The stage must succeed. We cannot propagate any exception close() might throw.
try
conn.close()
catch
case e: Exception => logger.warn("Transaction succeeded, but closing failed", e)
/**
* Saves the RDD to the database in a single transaction.
*/
def saveTable(
df: DataFrame,
url: String,
table: String,
options: JDBCOptions)
val dialect = JdbcDialects.get(url)
val nullTypes: Array[Int] = df.schema.fields.map field =>
getJdbcType(field.dataType, dialect).jdbcNullType
val rddSchema = df.schema
val getConnection: () => Connection = createConnectionFactory(options)
val batchSize = options.batchSize
val isolationLevel = options.isolationLevel
df.foreachPartition(iterator => savePartition(
getConnection, table, iterator, rddSchema, nullTypes, batchSize, dialect, isolationLevel)
)
private def makeSetter(
conn: Connection,
dialect: JdbcDialect,
dataType: DataType): JDBCValueSetter = dataType match
case IntegerType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setInt(pos + 1, row.getInt(pos))
case LongType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setLong(pos + 1, row.getLong(pos))
case DoubleType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setDouble(pos + 1, row.getDouble(pos))
case FloatType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setFloat(pos + 1, row.getFloat(pos))
case ShortType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setInt(pos + 1, row.getShort(pos))
case ByteType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setInt(pos + 1, row.getByte(pos))
case BooleanType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setBoolean(pos + 1, row.getBoolean(pos))
case StringType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setString(pos + 1, row.getString(pos))
case BinaryType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setBytes(pos + 1, row.getAs[Array[Byte]](pos))
case TimestampType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setTimestamp(pos + 1, row.getAs[java.sql.Timestamp](pos))
case DateType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setDate(pos + 1, row.getAs[java.sql.Date](pos))
case t: DecimalType =>
(stmt: PreparedStatement, row: Row, pos: Int) =>
stmt.setBigDecimal(pos + 1, row.getDecimal(pos))
case ArrayType(et, _) =>
// remove type length parameters from end of type name
val typeName = getJdbcType(et, dialect).databaseTypeDefinition
.toLowerCase.split("\\(")(0)
(stmt: PreparedStatement, row: Row, pos: Int) =>
val array = conn.createArrayOf(
typeName,
row.getSeq[AnyRef](pos).toArray)
stmt.setArray(pos + 1, array)
case _ =>
(_: PreparedStatement, _: Row, pos: Int) =>
throw new IllegalArgumentException(
s"Can't translate non-null value for field $pos")
用法:
val url = s"jdbc:mysql://$host/$database?useUnicode=true&characterEncoding=UTF-8"
val parameters: Map[String, String] = Map(
"url" -> url,
"dbtable" -> table,
"driver" -> "com.mysql.jdbc.Driver",
"numPartitions" -> numPartitions.toString,
"user" -> user,
"password" -> password
)
val options = new JDBCOptions(parameters)
for (d <- data)
UpdateJdbcUtils.saveTable(d, url, table, options)
ps:注意死锁,不要频繁更新数据,只是在紧急情况下重新运行时使用,我想这就是为什么spark不支持这个官方的原因。
【讨论】:
尝试运行代码时出现此错误:Caused by: java.io.NotSerializableException: UpdateJdbcUtils$ Serialization stack: - object not serializable (class: UpdateJdbcUtils$, value: UpdateJdbcUtils$@4f87e8f9) - field (class: UpdateJdbcUtils$$anonfun$saveTable$1, name: $outer, type: class UpdateJdbcUtils$) - object (class UpdateJdbcUtils$$anonfun$saveTable$1, <function1>) at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
【参考方案5】:
在 PYSPARK 中我无法做到这一点,所以我决定使用 odbc。
url = "jdbc:sqlserver://xxx:1433;databaseName=xxx;user=xxx;password=xxx"
df.write.jdbc(url=url, table="__TableInsert", mode='overwrite')
cnxn = pyodbc.connect('Driver=ODBC Driver 17 for SQL Server;Server=xxx;Database=xxx;Uid=xxx;Pwd=xxx;', autocommit=False)
try:
crsr = cnxn.cursor()
# DO UPSERTS OR WHATEVER YOU WANT
crsr.execute("DELETE FROM Table")
crsr.execute("INSERT INTO Table (Field) SELECT Field FROM __TableInsert")
cnxn.commit()
except:
cnxn.rollback()
cnxn.close()
【讨论】:
【参考方案6】:如果您的表很小,那么您可以读取 sql 数据并在 spark dataframe 中执行 upsertion。并覆盖已有的sql表。
【讨论】:
以上是关于SPARK SQL - 使用 DataFrames 和 JDBC 更新 MySql 表的主要内容,如果未能解决你的问题,请参考以下文章
Spark SQL, DataFrames and Datasets 指南
[Spark2.0]Spark SQL, DataFrames 和Datasets指南
SPARK SQL - 使用 DataFrames 和 JDBC 更新 MySql 表
spark知识体系04-SQL,DataFrames,DateSets