我们可以在mapreduce代码中的mapper类的setup方法中放置一些计算任务吗
Posted
技术标签:
【中文标题】我们可以在mapreduce代码中的mapper类的setup方法中放置一些计算任务吗【英文标题】:Can we put some computation task inside setup method of mapper class in mapreduce code 【发布时间】:2015-10-10 06:10:27 【问题描述】:我在映射器类中使用了 setup() 方法。还有一个用户定义的方法 aprioriGenK() 在 mapper 类中定义并在 map() 方法中调用。
现在的问题是:无论我知道什么 map 方法都会为每一行输入调用。假设有 100 行,那么这个方法调用了 100 次。 map 方法每次相应地调用 aprioriGenK 方法。但是每次调用map方法时不需要在map方法中调用aprioriGenK。即 aprioriGenK 方法的结果对于 map 方法的所有输入行都是通用的。 aprioriGenK 方法非常占用 CPU,因此在一次又一次调用时会增加计算时间。我们能否设法以某种方式一次调用 aprioriGenK 并每次在 map 方法中使用它。 我试图将 aprioriGen 保留在 setup 方法中,以便它只能被调用一次,但令人惊讶的是它在很大程度上减慢了执行速度。
这是我的代码:
import dataStructuresV2.ItemsetTrie;
public class AprioriTrieMapper extends Mapper<Object, Text, Text, IntWritable>
public static enum State
UPDATED
private final static IntWritable one = new IntWritable(1);
private Text itemset = new Text();
private Configuration conf;
private StringTokenizer fitemset; // store one line of previous output file of frequent itemsets
private ItemsetTrie trieLk_1 = null; // prefix tree to store candidate (k-1)-itemsets of previous pass
private int k; // itemsetSize or iteration no.
// private ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
public void setup(Context context) throws IOException, InterruptedException
conf = context.getConfiguration();
URI[] previousOutputURIs = Job.getInstance(conf).getCacheFiles();
k = conf.getInt("k", k);
trieLk_1 = new ItemsetTrie();
for (URI previousOutputURI : previousOutputURIs)
Path previousOutputPath = new Path(previousOutputURI.getPath());
String previousOutputFileName = previousOutputPath.getName().toString();
filterItemset(previousOutputFileName, trieLk_1);
// trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
// end method setup
//trim count from each line and store only itemset
private void filterItemset(String fileName, ItemsetTrie trieLk_1)
try
BufferedReader fis = new BufferedReader(new FileReader(fileName));
String line = null;
// trieLk_1 = new ItemsetTrie();
while ((line = fis.readLine()) != null)
fitemset = new StringTokenizer(line, "\t");
trieLk_1.insertCandidateItemset(fitemset.nextToken());
fis.close();
catch (IOException ioe)
System.err.println("Caught exception while parsing the cached file '" + fileName + "' : " + StringUtils.stringifyException(ioe));
// end method filterItemset
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
StringTokenizer items = new StringTokenizer(value.toString().toLowerCase()," \t\n\r\f,.:;?![]'"); // tokenize transaction
LinkedList <String>itemlist = new LinkedList<String>(); // store the tokens or itemse of transaction
LinkedList <String>listCt; // list of subset of transaction that are candidates
// Map <String, Integer>mapCt; // list of subset of transaction that are candidates with support count
ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
StringTokenizer candidate;
trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
if(trieCk.numberOfCandidate() > 0)
context.getCounter(State.UPDATED).increment(1); // increment counter
// optimization: if transaction size is less than candidate size then it should not be checked
if(items.countTokens() >= k)
while (items.hasMoreTokens()) // add tokens of transaction to list
itemlist.add(items.nextToken());
// we use either simple linkedlist listCt or map mapCt
listCt = trieCk.candidateSupportCount1(itemlist, k);
for(String listCtMember : listCt) // generate (key, value) pair. work on listCt
candidate = new StringTokenizer(listCtMember, "\n");
if(candidate.hasMoreTokens())
itemset.set(candidate.nextToken()); context.write(itemset, one);
// end if
// end method map
// generating candidate prefix tree of size k using prefix tree of size k-1
public ItemsetTrie aprioriGenK(ItemsetTrie trieLk_1, int itemsetSize) // itemsetSize of trie Lk_1
ItemsetTrie candidateTree = new ItemsetTrie(); // local prefix tree store candidates k-itemsets
trieLk_1.candidateGenK(candidateTree, itemsetSize); // new candidate prefix tree obtained
return candidateTree; // return prefix tree of size k
// end method aprioriGenK
//end class TrieBasedSPCItemsetMapper
这是我的驱动程序类:
公共类 AprioriTrie 私有静态 Logger log = Logger.getLogger(AprioriTrie.class);
public static void main(String[] args) throws Exception
Configuration conf = new Configuration();
// String minsup = "1";
String minsup = null;
List<String> otherArgs = new ArrayList<String>();
for (int i=0; i < args.length; ++i)
if ("-minsup".equals(args[i]))
minsup = args[++i];
else
otherArgs.add(args[i]);
conf.set("min_sup", minsup);
log.info("Started counting 1-itemset ....................");
Date date; long startTime, endTime; // for recording start and end time of job
date = new Date(); startTime = date.getTime(); // starting timer
// Phase-1
Job job = Job.getInstance(conf, "AprioriTrie: Iteration-1");
job.setJarByClass(aprioriBasedAlgorithms.AprioriTrie.class);
job.setMapperClass(OneItemsetMapper.class);
job.setCombinerClass(OneItemsetCombiner.class);
job.setReducerClass(OneItemsetReducer.class);
// job.setOutputKeyClass(Text.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(NLineInputFormat.class);
NLineInputFormat.setNumLinesPerSplit(job, 10000); // set specific no. of line of records
// Path inputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/sample-transactions1/");
Path inputPath = new Path(otherArgs.get(0));
// Path outputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-1");
Path outputPath = new Path(otherArgs.get(1)+"/fis-1");
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
if(job.waitForCompletion(true))
log.info("SUCCESSFULLY- Completed Frequent 1-itemsets Geneation.");
else
log.info("ERROR- Completed Frequent 1-itemsets Geneation.");
// Phase-k >=2
int iteration = 1; long counter;
do
Configuration conf2 = new Configuration();
conf2.set("min_sup", minsup);
conf2.setInt("k", iteration+1);
log.info("Started counting "+(iteration+1)+"-itemsets ..................");
Job job2 = Job.getInstance(conf2, "AprioriTrie: Iteration-"+(iteration+1));
job2.setJarByClass(aprioriBasedAlgorithms.AprioriTrie.class);
job2.setMapperClass(AprioriTrieMapper.class);
job2.setCombinerClass(ItemsetCombiner.class);
job2.setReducerClass(ItemsetReducer.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(IntWritable.class);
job2.setNumReduceTasks(4); // break the output in 3 files
job2.setInputFormatClass(NLineInputFormat.class);
NLineInputFormat.setNumLinesPerSplit(job2, 10000);
FileSystem fs = FileSystem.get(new URI("hdfs://hadoopmaster:9000"), conf2);
// FileStatus[] status = fs.listStatus(new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-"+iteration+"/"));
FileStatus[] status = fs.listStatus(new Path(otherArgs.get(1)+"/fis-"+iteration));
for (int i=0;i<status.length;i++)
job2.addCacheFile(status[i].getPath().toUri()); // add all files inside output fis
//job2.addFileToClassPath(status[i].getPath());
// input is same for these job
// outputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-"+(iteration+1));
outputPath = new Path(otherArgs.get(1)+"/fis-"+(iteration+1));
FileInputFormat.setInputPaths(job2, inputPath);
FileOutputFormat.setOutputPath(job2, outputPath);
if(job2.waitForCompletion(true))
log.info("SUCCESSFULLY- Completed Frequent "+(iteration+1)+"-itemsets Generation.");
else
log.info("ERROR- Completed Frequent "+(iteration+1)+"-itemsets Generation.");
iteration++;
counter = job2.getCounters().findCounter(AprioriTrieMapper.State.UPDATED).getValue();
while (counter > 0);
date = new Date(); endTime = date.getTime(); //end timer
log.info("Total Time (in milliseconds) = "+ (endTime-startTime));
log.info("Total Time (in seconds) = "+ (endTime-startTime)*0.001F);
【问题讨论】:
【参考方案1】:您可以在 setup 调用之后将该函数调用添加到映射器的 run 方法中。这将确保每个映射器只调用一次您的方法。
public class Mymapper extends Mapper<LongWritable,Text,Text,IntWritable>
public void map(LongWritable key,Text value,Context context) throws IOException,InterruptedException
//do something
public void myfunc(String parm)
System.out.println("parm="+parm);
public void run(Context context) throws IOException, InterruptedException
setup(context);
myfunc("hello");
while(context.nextKeyValue())
map(context.getCurrentKey(), context.getCurrentValue(), context);
【讨论】:
我还没有习惯使用 run 方法,也不知道如何在驱动程序类中使用它。我在修改后的问题中添加了我的驱动程序类。我也需要帮助才能在驱动程序类中调用。 @SudhakarSingh 您不需要在驱动程序类中添加任何内容。只需将 myfunc() 替换为您的函数名称,将其添加到您的映射器类中,以便在您的 setup 方法之后和调用从 Inputformat 读取之前调用它。【参考方案2】:我对映射器类进行了更改,但生成的代码非常慢,而且似乎多次调用 aprioriGenK()
。
这是我修改后的代码。
public class AprioriTrieMapper extends Mapper<Object, Text, Text, IntWritable>
public static enum State
UPDATED
private final static IntWritable one = new IntWritable(1);
private Text itemset = new Text();
private Configuration conf;
private StringTokenizer fitemset; // store one line of previous output file of frequent itemsets
private ItemsetTrie trieLk_1 = null; // prefix tree to store candidate (k-1)-itemsets of previous pass
private int k; // itemsetSize or iteration no.
private ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
public void setup(Context context) throws IOException, InterruptedException
conf = context.getConfiguration();
URI[] previousOutputURIs = Job.getInstance(conf).getCacheFiles();
k = conf.getInt("k", k);
trieLk_1 = new ItemsetTrie();
for (URI previousOutputURI : previousOutputURIs)
Path previousOutputPath = new Path(previousOutputURI.getPath());
String previousOutputFileName = previousOutputPath.getName().toString();
filterItemset(previousOutputFileName, trieLk_1);
// trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
// end method setup
//trim count from each line and store only itemset
private void filterItemset(String fileName, ItemsetTrie trieLk_1)
try
BufferedReader fis = new BufferedReader(new FileReader(fileName));
String line = null;
// trieLk_1 = new ItemsetTrie();
while ((line = fis.readLine()) != null)
fitemset = new StringTokenizer(line, "\t");
trieLk_1.insertCandidateItemset(fitemset.nextToken());
fis.close();
catch (IOException ioe)
System.err.println("Caught exception while parsing the cached file '" + fileName + "' : " + StringUtils.stringifyException(ioe));
// end method filterItemset
//run method
public void run(Context context) throws IOException, InterruptedException
setup(context);
trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
if(trieCk.numberOfCandidate() > 0)
context.getCounter(State.UPDATED).increment(1); // increment counter
while(context.nextKeyValue())
map(context.getCurrentKey(), context.getCurrentValue(), context);
// end method run
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
StringTokenizer items = new StringTokenizer(value.toString().toLowerCase()," \t\n\r\f,.:;?![]'"); // tokenize transaction
LinkedList <String>itemlist = new LinkedList<String>(); // store the tokens or itemse of transaction
LinkedList <String>listCt; // list of subset of transaction that are candidates
// Map <String, Integer>mapCt; // list of subset of transaction that are candidates with support count
// ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
StringTokenizer candidate;
// if(context.getCounter(State.UPDATED).getValue() == 0)
//
// trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
// if(trieCk.numberOfCandidate() > 0)
// context.getCounter(State.UPDATED).increment(1); // increment counter
//
// optimization: if transaction size is less than candidate size then it should not be checked
if(items.countTokens() >= k)
while (items.hasMoreTokens()) // add tokens of transaction to list
itemlist.add(items.nextToken());
// we use either simple linkedlist listCt or map mapCt
listCt = trieCk.candidateSupportCount1(itemlist, k);
for(String listCtMember : listCt) // generate (key, value) pair. work on listCt
candidate = new StringTokenizer(listCtMember, "\n");
if(candidate.hasMoreTokens())
itemset.set(candidate.nextToken()); context.write(itemset, one);
// end if
// end method map
// generating candidate prefix tree of size k using prefix tree of size k-1
public ItemsetTrie aprioriGenK(ItemsetTrie trieLk_1, int itemsetSize) // itemsetSize of trie Lk_1
ItemsetTrie candidateTree = new ItemsetTrie(); // local prefix tree store candidates k-itemsets
trieLk_1.candidateGenK(candidateTree, itemsetSize); // new candidate prefix tree obtained
return candidateTree; // return prefix tree of size k
// end method aprioriGenK
//end class TrieBasedSPCItemsetMapper
【讨论】:
以上是关于我们可以在mapreduce代码中的mapper类的setup方法中放置一些计算任务吗的主要内容,如果未能解决你的问题,请参考以下文章