java codility 训练基因组范围查询
Posted
技术标签:
【中文标题】java codility 训练基因组范围查询【英文标题】:java codility training Genomic-range-query 【发布时间】:2013-10-23 21:35:28 【问题描述】:任务是:
给出了一个非空的零索引字符串 S。字符串 S 由大写英文字母 A、C、G、T 集合中的 N 个字符组成。
这个字符串实际上代表一个DNA序列,大写字母代表单个核苷酸。
你还得到了由 M 个整数组成的非空零索引数组 P 和 Q。这些数组代表关于最小核苷酸的查询。我们将字符串 S 的字母表示为数组 P 和 Q 中的整数 1、2、3、4,其中 A = 1、C = 2、G = 3、T = 4,我们假设 A
查询 K 要求您从 (P[K], Q[K]) 0 ≤ P[i] ≤ Q[i]
例如,考虑字符串 S = GACACCATA 和数组 P、Q,这样:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
这些范围内的最少核苷酸如下:
(0, 8) is A identified by 1,
(0, 2) is A identified by 1,
(4, 5) is C identified by 2,
(7, 7) is T identified by 4.
写一个函数:
class Solution public int[] solution(String S, int[] P, int[] Q);
给定一个由 N 个字符组成的非空零索引字符串 S 和两个由 M 个整数组成的非空零索引数组 P 和 Q,返回一个由 M 个字符组成的数组,指定所有查询的连续答案.
序列应返回为:
a Results structure (in C), or
a vector of integers (in C++), or
a Results record (in Pascal), or
an array of integers (in any other programming language).
例如,给定字符串 S = GACACCATA 和数组 P、Q,这样:
P[0] = 0 Q[0] = 8
P[1] = 0 Q[1] = 2
P[2] = 4 Q[2] = 5
P[3] = 7 Q[3] = 7
该函数应返回值 [1, 1, 2, 4],如上所述。
假设:
N is an integer within the range [1..100,000];
M is an integer within the range [1..50,000];
each element of array P, Q is an integer within the range [0..N − 1];
P[i] ≤ Q[i];
string S consists only of upper-case English letters A, C, G, T.
复杂性:
expected worst-case time complexity is O(N+M);
expected worst-case space complexity is O(N),
beyond input storage
(not counting the storage required for input arguments).
输入数组的元素可以修改。
我的解决方案是:
class Solution
public int[] solution(String S, int[] P, int[] Q)
final char c[] = S.toCharArray();
final int answer[] = new int[P.length];
int tempAnswer;
char tempC;
for (int iii = 0; iii < P.length; iii++)
tempAnswer = 4;
for (int zzz = P[iii]; zzz <= Q[iii]; zzz++)
tempC = c[zzz];
if (tempC == 'A')
tempAnswer = 1;
break;
else if (tempC == 'C')
if (tempAnswer > 2)
tempAnswer = 2;
else if (tempC == 'G')
if (tempAnswer > 3)
tempAnswer = 3;
answer[iii] = tempAnswer;
return answer;
这不是最佳的,我相信它应该在一个循环内完成,任何提示我该如何实现它?
您可以在这里检查解决方案的质量https://codility.com/train/ 测试名称是 Genomic-range-query。
【问题讨论】:
这可能不是这个问题的正确位置。试试Codereview。 供将来参考,此问题称为Range Minimum Query,如您的回答所示,您可以在 O(1) 中处理范围查询,给定 O(N) 预处理。 【参考方案1】:这是在 codility.com 中获得 100 分中的 100 分的解决方案。请阅读前缀和以了解解决方案:
public static int[] solveGenomicRange(String S, int[] P, int[] Q)
//used jagged array to hold the prefix sums of each A, C and G genoms
//we don't need to get prefix sums of T, you will see why.
int[][] genoms = new int[3][S.length()+1];
//if the char is found in the index i, then we set it to be 1 else they are 0
//3 short values are needed for this reason
short a, c, g;
for (int i=0; i<S.length(); i++)
a = 0; c = 0; g = 0;
if ('A' == (S.charAt(i)))
a=1;
if ('C' == (S.charAt(i)))
c=1;
if ('G' == (S.charAt(i)))
g=1;
//here we calculate prefix sums. To learn what's prefix sums look at here https://codility.com/media/train/3-PrefixSums.pdf
genoms[0][i+1] = genoms[0][i] + a;
genoms[1][i+1] = genoms[1][i] + c;
genoms[2][i+1] = genoms[2][i] + g;
int[] result = new int[P.length];
//here we go through the provided P[] and Q[] arrays as intervals
for (int i=0; i<P.length; i++)
int fromIndex = P[i];
//we need to add 1 to Q[i],
//because our genoms[0][0], genoms[1][0] and genoms[2][0]
//have 0 values by default, look above genoms[0][i+1] = genoms[0][i] + a;
int toIndex = Q[i]+1;
if (genoms[0][toIndex] - genoms[0][fromIndex] > 0)
result[i] = 1;
else if (genoms[1][toIndex] - genoms[1][fromIndex] > 0)
result[i] = 2;
else if (genoms[2][toIndex] - genoms[2][fromIndex] > 0)
result[i] = 3;
else
result[i] = 4;
return result;
【讨论】:
这是一个聪明的解决方案。尽管在代码中,它暗示使用前缀和,但很难应用于这种情况。谢谢。 这些 cmets 很容易理解 :) 笔误。fromIndex = P[i]+1; //+1 is not required
不错的解决方案 :),虽然我不明白为什么 toIndex = Q[i] + 1
?
gmuhammad,我把 cmets 放在上面,我们必须加 1,因为我们的锯齿状数组在 genoms[n][0] 处包含零,默认情况下(这是前缀总和在开始)。因此,锯齿状数组的大小要大一个元素以适应那些零 - int[][] genoms = new int[3][S.length()+1]; (S.length()+1,长度加1以保持默认零)【参考方案2】:
使用 cmets 的 JS 中简单、优雅、特定领域的 100/100 解决方案!
function solution(S, P, Q)
var N = S.length, M = P.length;
// dictionary to map nucleotide to impact factor
var impact = A : 1, C : 2, G : 3, T : 4;
// nucleotide total count in DNA
var currCounter = A : 0, C : 0, G : 0, T : 0;
// how many times nucleotide repeats at the moment we reach S[i]
var counters = [];
// result
var minImpact = [];
var i;
// count nucleotides
for(i = 0; i <= N; i++)
counters.push(A: currCounter.A, C: currCounter.C, G: currCounter.G);
currCounter[S[i]]++;
// for every query
for(i = 0; i < M; i++)
var from = P[i], to = Q[i] + 1;
// compare count of A at the start of query with count at the end of equry
// if counter was changed then query contains A
if(counters[to].A - counters[from].A > 0)
minImpact.push(impact.A);
// same things for C and others nucleotides with higher impact factor
else if(counters[to].C - counters[from].C > 0)
minImpact.push(impact.C);
else if(counters[to].G - counters[from].G > 0)
minImpact.push(impact.G);
else // one of the counters MUST be changed, so its T
minImpact.push(impact.T);
return minImpact;
【讨论】:
【参考方案3】:Java,100/100,但没有累积/前缀总和!我将较低 3 个核苷酸的最后一次出现索引隐藏在数组“map”中。稍后我检查最后一个索引是否在 P-Q 之间。如果是,则返回核苷酸,如果未找到,则为顶部的(T):
class Solution
int[][] lastOccurrencesMap;
public int[] solution(String S, int[] P, int[] Q)
int N = S.length();
int M = P.length;
int[] result = new int[M];
lastOccurrencesMap = new int[3][N];
int lastA = -1;
int lastC = -1;
int lastG = -1;
for (int i = 0; i < N; i++)
char c = S.charAt(i);
if (c == 'A')
lastA = i;
else if (c == 'C')
lastC = i;
else if (c == 'G')
lastG = i;
lastOccurrencesMap[0][i] = lastA;
lastOccurrencesMap[1][i] = lastC;
lastOccurrencesMap[2][i] = lastG;
for (int i = 0; i < M; i++)
int startIndex = P[i];
int endIndex = Q[i];
int minimum = 4;
for (int n = 0; n < 3; n++)
int lastOccurence = getLastNucleotideOccurrence(startIndex, endIndex, n);
if (lastOccurence != 0)
minimum = n + 1;
break;
result[i] = minimum;
return result;
int getLastNucleotideOccurrence(int startIndex, int endIndex, int nucleotideIndex)
int[] lastOccurrences = lastOccurrencesMap[nucleotideIndex];
int endValueLastOccurenceIndex = lastOccurrences[endIndex];
if (endValueLastOccurenceIndex >= startIndex)
return nucleotideIndex + 1;
else
return 0;
【讨论】:
【参考方案4】:这里是解决方案,假设有人仍然感兴趣。
class Solution
public int[] solution(String S, int[] P, int[] Q)
int[] answer = new int[P.length];
char[] chars = S.toCharArray();
int[][] cumulativeAnswers = new int[4][chars.length + 1];
for (int iii = 0; iii < chars.length; iii++)
if (iii > 0)
for (int zzz = 0; zzz < 4; zzz++)
cumulativeAnswers[zzz][iii + 1] = cumulativeAnswers[zzz][iii];
switch (chars[iii])
case 'A':
cumulativeAnswers[0][iii + 1]++;
break;
case 'C':
cumulativeAnswers[1][iii + 1]++;
break;
case 'G':
cumulativeAnswers[2][iii + 1]++;
break;
case 'T':
cumulativeAnswers[3][iii + 1]++;
break;
for (int iii = 0; iii < P.length; iii++)
for (int zzz = 0; zzz < 4; zzz++)
if ((cumulativeAnswers[zzz][Q[iii] + 1] - cumulativeAnswers[zzz][P[iii]]) > 0)
answer[iii] = zzz + 1;
break;
return answer;
【讨论】:
算法的第一部分为每个符号 x 和每个输入字符 y 创建一个计算矩阵。第二部分是诀窍的关键。我试图理解if ((cumulativeAnswers[zzz][Q[iii] + 1] - cumulativeAnswers[zzz][P[iii]]) > 0) answer[iii] = zzz + 1; break;
为什么会这样?
也许我理解每一列代表每个符号的出现次数。当我们发现同一行的两个元素之间出现多次为正时,这意味着我们在该位置添加了该元素。因此,如果我们发现了一个积极的差异,我们发现了最小值!【参考方案5】:
如果有人关心 C:
#include <string.h>
struct Results solution(char *S, int P[], int Q[], int M)
int i, a, b, N, *pA, *pC, *pG;
struct Results result;
result.A = malloc(sizeof(int) * M);
result.M = M;
// calculate prefix sums
N = strlen(S);
pA = malloc(sizeof(int) * N);
pC = malloc(sizeof(int) * N);
pG = malloc(sizeof(int) * N);
pA[0] = S[0] == 'A' ? 1 : 0;
pC[0] = S[0] == 'C' ? 1 : 0;
pG[0] = S[0] == 'G' ? 1 : 0;
for (i = 1; i < N; i++)
pA[i] = pA[i - 1] + (S[i] == 'A' ? 1 : 0);
pC[i] = pC[i - 1] + (S[i] == 'C' ? 1 : 0);
pG[i] = pG[i - 1] + (S[i] == 'G' ? 1 : 0);
for (i = 0; i < M; i++)
a = P[i] - 1;
b = Q[i];
if ((pA[b] - pA[a]) > 0)
result.A[i] = 1;
else if ((pC[b] - pC[a]) > 0)
result.A[i] = 2;
else if ((pG[b] - pG[a]) > 0)
result.A[i] = 3;
else
result.A[i] = 4;
return result;
【讨论】:
【参考方案6】:这是我使用分段树 O(n)+O(log n)+O(M) 时间的解决方案
public class DNAseq
public static void main(String[] args)
String S="CAGCCTA";
int[] P=2, 5, 0;
int[] Q=4, 5, 6;
int [] results=solution(S,P,Q);
System.out.println(results[0]);
static class segmentNode
int l;
int r;
int min;
segmentNode left;
segmentNode right;
public static segmentNode buildTree(int[] arr,int l,int r)
if(l==r)
segmentNode n=new segmentNode();
n.l=l;
n.r=r;
n.min=arr[l];
return n;
int mid=l+(r-l)/2;
segmentNode le=buildTree(arr,l,mid);
segmentNode re=buildTree(arr,mid+1,r);
segmentNode root=new segmentNode();
root.left=le;
root.right=re;
root.l=le.l;
root.r=re.r;
root.min=Math.min(le.min,re.min);
return root;
public static int getMin(segmentNode root,int l,int r)
if(root.l>r || root.r<l)
return Integer.MAX_VALUE;
if(root.l>=l&& root.r<=r)
return root.min;
return Math.min(getMin(root.left,l,r),getMin(root.right,l,r));
public static int[] solution(String S, int[] P, int[] Q)
int[] arr=new int[S.length()];
for(int i=0;i<S.length();i++)
switch (S.charAt(i))
case 'A':
arr[i]=1;
break;
case 'C':
arr[i]=2;
break;
case 'G':
arr[i]=3;
break;
case 'T':
arr[i]=4;
break;
default:
break;
segmentNode root=buildTree(arr,0,S.length()-1);
int[] result=new int[P.length];
for(int i=0;i<P.length;i++)
result[i]=getMin(root,P[i],Q[i]);
return result;
【讨论】:
我喜欢这个想法,这个问题非常适合 SegmentTree。 我想知道您对“extreme_large - all max range”的性能结果是什么。 SegmentTree 真的是解决这个问题的完美主意。感谢您指出这个想法。【参考方案7】:这是我的解决方案。得到 %100 。当然,我需要先检查和研究一点前缀和。
public int[] solution(String S, int[] P, int[] Q)
int[] result = new int[P.length];
int[] factor1 = new int[S.length()];
int[] factor2 = new int[S.length()];
int[] factor3 = new int[S.length()];
int[] factor4 = new int[S.length()];
int factor1Sum = 0;
int factor2Sum = 0;
int factor3Sum = 0;
int factor4Sum = 0;
for(int i=0; i<S.length(); i++)
switch (S.charAt(i))
case 'A':
factor1Sum++;
break;
case 'C':
factor2Sum++;
break;
case 'G':
factor3Sum++;
break;
case 'T':
factor4Sum++;
break;
default:
break;
factor1[i] = factor1Sum;
factor2[i] = factor2Sum;
factor3[i] = factor3Sum;
factor4[i] = factor4Sum;
for(int i=0; i<P.length; i++)
int start = P[i];
int end = Q[i];
if(start == 0)
if(factor1[end] > 0)
result[i] = 1;
else if(factor2[end] > 0)
result[i] = 2;
else if(factor3[end] > 0)
result[i] = 3;
else
result[i] = 4;
else
if(factor1[end] > factor1[start-1])
result[i] = 1;
else if(factor2[end] > factor2[start-1])
result[i] = 2;
else if(factor3[end] > factor3[start-1])
result[i] = 3;
else
result[i] = 4;
return result;
【讨论】:
【参考方案8】:这是我的 javascript 解决方案,在 Codility 上获得了 100% 的好评:
function solution(S, P, Q)
let total = [];
let min;
for (let i = 0; i < P.length; i++)
const substring = S.slice(P[i], Q[i] + 1);
if (substring.includes('A'))
min = 1;
else if (substring.includes('C'))
min = 2;
else if (substring.includes('G'))
min = 3;
else if (substring.includes('T'))
min = 4;
total.push(min);
return total;
【讨论】:
我们必须检查String.includes()
方法的时间复杂度。如果是O( String.length )
,那么这个解决方案就是O ( P * S )
,这并不理想。我也不确定String.slice()
的时间复杂度。
这个的时间复杂度不是很好,但是我很惊讶你可以在代码中获得 100% 的覆盖率。请记住使用 slice 并包括进一步的大声笑【参考方案9】:
这是一个 C# 解决方案,基本思想与其他答案几乎相同,但可能更简洁:
using System;
class Solution
public int[] solution(string S, int[] P, int[] Q)
int N = S.Length;
int M = P.Length;
char[] chars = 'A','C','G','T';
//Calculate accumulates
int[,] accum = new int[3, N+1];
for (int i = 0; i <= 2; i++)
for (int j = 0; j < N; j++)
if(S[j] == chars[i]) accum[i, j+1] = accum[i, j] + 1;
else accum[i, j+1] = accum[i, j];
//Get minimal nucleotides for the given ranges
int diff;
int[] minimums = new int[M];
for (int i = 0; i < M; i++)
minimums[i] = 4;
for (int j = 0; j <= 2; j++)
diff = accum[j, Q[i]+1] - accum[j, P[i]];
if (diff > 0)
minimums[i] = j+1;
break;
return minimums;
【讨论】:
欢迎来到 SO。不要只是发布代码。你可以给一个 sudo 代码。因为问题是在java中,或者你可以解释算法。祝你好运。 :)【参考方案10】:import java.util.Arrays;
import java.util.HashMap;
class Solution
static HashMap<Character, Integer > characterMapping = new HashMap<Character, Integer>()
put('A',1);
put('C',2);
put('G',3);
put('T',4);
;
public static int minimum(int[] arr)
if (arr.length ==1) return arr[0];
int smallestIndex = 0;
for (int index = 0; index<arr.length; index++)
if (arr[index]<arr[smallestIndex]) smallestIndex=index;
return arr[smallestIndex];
public int[] solution(String S, int[] P, int[] Q)
final char[] characterInput = S.toCharArray();
final int[] integerInput = new int[characterInput.length];
for(int counter=0; counter < characterInput.length; counter++)
integerInput[counter] = characterMapping.get(characterInput[counter]);
int[] result = new int[P.length];
//assuming P and Q have the same length
for(int index =0; index<P.length; index++)
if (P[index]==Q[index])
result[index] = integerInput[P[index]];
break;
final int[] subArray = Arrays.copyOfRange(integerInput, P[index], Q[index]+1);
final int minimumValue = minimum(subArray);
result[index]= minimumValue;
return result;
【讨论】:
【参考方案11】:这是 100% Scala 解决方案:
def solution(S: String, P: Array[Int], Q: Array[Int]): Array[Int] =
val resp = for(ind <- 0 to P.length-1) yield
val sub= S.substring(P(ind),Q(ind)+1)
var factor = 4
if(sub.contains("A")) factor=1
else
if(sub.contains("C")) factor=2
else
if(sub.contains("G")) factor=3
factor
return resp.toArray
和性能:https://codility.com/demo/results/trainingEUR4XP-425/
【讨论】:
【参考方案12】:希望这会有所帮助。
public int[] solution(String S, int[] P, int[] K)
// write your code in Java SE 8
char[] sc = S.toCharArray();
int[] A = new int[sc.length];
int[] G = new int[sc.length];
int[] C = new int[sc.length];
int prevA =-1,prevG=-1,prevC=-1;
for(int i=0;i<sc.length;i++)
if(sc[i]=='A')
prevA=i;
else if(sc[i] == 'G')
prevG=i;
else if(sc[i] =='C')
prevC=i;
A[i] = prevA;
G[i] = prevG;
C[i] = prevC;
//System.out.println(A[i]+ " "+G[i]+" "+C[i]);
int[] result = new int[P.length];
for(int i=0;i<P.length;i++)
//System.out.println(A[P[i]]+ " "+A[K[i]]+" "+C[P[i]]+" "+C[K[i]]+" "+P[i]+" "+K[i]);
if(A[K[i]] >=P[i] && A[K[i]] <=K[i])
result[i] =1;
else if(C[K[i]] >=P[i] && C[K[i]] <=K[i])
result[i] =2;
else if(G[K[i]] >=P[i] && G[K[i]] <=K[i])
result[i] =3;
else
result[i]=4;
return result;
【讨论】:
【参考方案13】:如果有人仍然对这个练习感兴趣,我分享我的 Python 解决方案(100/100 in Codility)
def solution(S, P, Q):
count = []
for i in range(3):
count.append([0]*(len(S)+1))
for index, i in enumerate(S):
count[0][index+1] = count[0][index] + ( i =='A')
count[1][index+1] = count[1][index] + ( i =='C')
count[2][index+1] = count[2][index] + ( i =='G')
result = []
for i in range(len(P)):
start = P[i]
end = Q[i]+1
if count[0][end] - count[0][start]:
result.append(1)
elif count[1][end] - count[1][start]:
result.append(2)
elif count[2][end] - count[2][start]:
result.append(3)
else:
result.append(4)
return result
【讨论】:
终于有一个简洁的 Python 解决方案了!谢谢【参考方案14】:带有解释的 Python 解决方案
这个想法是为每个核苷酸 X 保存一个辅助数组,位置 i(忽略零)是到目前为止 X 出现的次数。因此,如果我们需要从位置 f 到位置 t 的 X 出现次数,我们可以采用以下等式:
辅助(t) - 辅助(f)
时间复杂度为:
O(N+M)
def solution(S, P, Q):
n = len(S)
m = len(P)
aux = [[0 for i in range(n+1)] for i in [0,1,2]]
for i,c in enumerate(S):
aux[0][i+1] = aux[0][i] + ( c == 'A' )
aux[1][i+1] = aux[1][i] + ( c == 'C' )
aux[2][i+1] = aux[2][i] + ( c == 'G' )
result = []
for i in range(m):
fromIndex , toIndex = P[i] , Q[i] +1
if aux[0][toIndex] - aux[0][fromIndex] > 0:
r = 1
elif aux[1][toIndex] - aux[1][fromIndex] > 0:
r = 2
elif aux[2][toIndex] - aux[2][fromIndex] > 0:
r = 3
else:
r = 4
result.append(r)
return result
【讨论】:
【参考方案15】:这是针对同一问题的 Swift 4 解决方案。它基于上面@codebusta的解决方案:
public func solution(_ S : inout String, _ P : inout [Int], _ Q : inout [Int]) -> [Int]
var impacts = [Int]()
var prefixSum = [[Int]]()
for _ in 0..<3
let array = Array(repeating: 0, count: S.count + 1)
prefixSum.append(array)
for (index, character) in S.enumerated()
var a = 0
var c = 0
var g = 0
switch character
case "A":
a = 1
case "C":
c = 1
case "G":
g = 1
default:
break
prefixSum[0][index + 1] = prefixSum[0][index] + a
prefixSum[1][index + 1] = prefixSum[1][index] + c
prefixSum[2][index + 1] = prefixSum[2][index] + g
for tuple in zip(P, Q)
if prefixSum[0][tuple.1 + 1] - prefixSum[0][tuple.0] > 0
impacts.append(1)
else if prefixSum[1][tuple.1 + 1] - prefixSum[1][tuple.0] > 0
impacts.append(2)
else if prefixSum[2][tuple.1 + 1] - prefixSum[2][tuple.0] > 0
impacts.append(3)
else
impacts.append(4)
return impacts
【讨论】:
【参考方案16】:pshemek 的解决方案将自身限制为空间复杂度 (O(N)) - 即使使用二维数组和答案数组,因为常量 (4) 用于二维数组。该解决方案也适合计算复杂度 - 而我的是 O (N^2) - 尽管实际计算复杂度要低得多,因为它跳过了包括最小值的整个范围。
我试了一下 - 但我的最终使用了更多空间 - 但对我来说更直观(C#):
public static int[] solution(String S, int[] P, int[] Q)
const int MinValue = 1;
Dictionary<char, int> stringValueTable = new Dictionary<char,int>() 'A', 1, 'C', 2, 'G', 3, 'T', 4 ;
char[] inputArray = S.ToCharArray();
int[,] minRangeTable = new int[S.Length, S.Length]; // The meaning of this table is [x, y] where x is the start index and y is the end index and the value is the min range - if 0 then it is the min range (whatever that is)
for (int startIndex = 0; startIndex < S.Length; ++startIndex)
int currentMinValue = 4;
int minValueIndex = -1;
for (int endIndex = startIndex; (endIndex < S.Length) && (minValueIndex == -1); ++endIndex)
int currentValue = stringValueTable[inputArray[endIndex]];
if (currentValue < currentMinValue)
currentMinValue = currentValue;
if (currentMinValue == MinValue) // We can stop iterating - because anything with this index in its range will always be minimal
minValueIndex = endIndex;
else
minRangeTable[startIndex, endIndex] = currentValue;
else
minRangeTable[startIndex, endIndex] = currentValue;
if (minValueIndex != -1) // Skip over this index - since it is minimal
startIndex = minValueIndex; // We would have a "+ 1" here - but the "auto-increment" in the for statement will get us past this index
int[] result = new int[P.Length];
for (int outputIndex = 0; outputIndex < result.Length; ++outputIndex)
result[outputIndex] = minRangeTable[P[outputIndex], Q[outputIndex]];
if (result[outputIndex] == 0) // We could avoid this if we initialized our 2-d array with 1's
result[outputIndex] = 1;
return result;
在 pshemek 的回答中 - 第二个循环中的“技巧”很简单,即一旦您确定找到了一个具有最小值的范围 - 您就不需要继续迭代了。不确定这是否有帮助。
【讨论】:
【参考方案17】:php 100/100 解决方案:
function solution($S, $P, $Q)
$S = str_split($S);
$len = count($S);
$lep = count($P);
$arr = array();
$result = array();
$clone = array_fill(0, 4, 0);
for($i = 0; $i < $len; $i++)
$arr[$i] = $clone;
switch($S[$i])
case 'A':
$arr[$i][0] = 1;
break;
case 'C':
$arr[$i][1] = 1;
break;
case 'G':
$arr[$i][2] = 1;
break;
default:
$arr[$i][3] = 1;
break;
for($i = 1; $i < $len; $i++)
for($j = 0; $j < 4; $j++)
$arr[$i][$j] += $arr[$i - 1][$j];
for($i = 0; $i < $lep; $i++)
$x = $P[$i];
$y = $Q[$i];
for($a = 0; $a < 4; $a++)
$sub = 0;
if($x - 1 >= 0)
$sub = $arr[$x - 1][$a];
if($arr[$y][$a] - $sub > 0)
$result[$i] = $a + 1;
break;
return $result;
【讨论】:
【参考方案18】:这个程序获得了 100 分,性能方面比上面列出的其他 java 代码更有优势!
代码可以在here找到。
public class GenomicRange
final int Index_A=0, Index_C=1, Index_G=2, Index_T=3;
final int A=1, C=2, G=3, T=4;
public static void main(String[] args)
GenomicRange gen = new GenomicRange();
int[] M = gen.solution( "GACACCATA", new int[] 0,0,4,7 , new int[] 8,2,5,7 );
System.out.println(Arrays.toString(M));
public int[] solution(String S, int[] P, int[] Q)
int[] M = new int[P.length];
char[] charArr = S.toCharArray();
int[][] occCount = new int[3][S.length()+1];
int charInd = getChar(charArr[0]);
if(charInd!=3)
occCount[charInd][1]++;
for(int sInd=1; sInd<S.length(); sInd++)
charInd = getChar(charArr[sInd]);
if(charInd!=3)
occCount[charInd][sInd+1]++;
occCount[Index_A][sInd+1]+=occCount[Index_A][sInd];
occCount[Index_C][sInd+1]+=occCount[Index_C][sInd];
occCount[Index_G][sInd+1]+=occCount[Index_G][sInd];
for(int i=0;i<P.length;i++)
int a,c,g;
if(Q[i]+1>=occCount[0].length) continue;
a = occCount[Index_A][Q[i]+1] - occCount[Index_A][P[i]];
c = occCount[Index_C][Q[i]+1] - occCount[Index_C][P[i]];
g = occCount[Index_G][Q[i]+1] - occCount[Index_G][P[i]];
M[i] = a>0? A : c>0 ? C : g>0 ? G : T;
return M;
private int getChar(char c)
return ((c=='A') ? Index_A : ((c=='C') ? Index_C : ((c=='G') ? Index_G : Index_T)));
【讨论】:
【参考方案19】:这是一个 100% 的简单 javascript 解决方案。
function solution(S, P, Q)
var A = [];
var C = [];
var G = [];
var T = [];
var result = [];
var i = 0;
S.split('').forEach(function(a)
if (a === 'A')
A.push(i);
else if (a === 'C')
C.push(i);
else if (a === 'G')
G.push(i);
else
T.push(i);
i++;
);
function hasNucl(typeArray, start, end)
return typeArray.some(function(a)
return a >= P[j] && a <= Q[j];
);
for(var j=0; j<P.length; j++)
if (hasNucl(A, P[j], P[j]))
result.push(1)
else if (hasNucl(C, P[j], P[j]))
result.push(2);
else if (hasNucl(G, P[j], P[j]))
result.push(3);
else
result.push(4);
return result;
【讨论】:
我认为您的代码中会有一些错误和编译错误。例如,您使用P[j]
作为第二个和第三个参数调用了hasNucl
。同样在此函数声明中,您使用了未在该范围内定义的 j
。【参考方案20】:
perl 100/100 解决方案:
sub solution
my ($S, $P, $Q)=@_; my @P=@$P; my @Q=@$Q;
my @_A = (0), @_C = (0), @_G = (0), @ret =();
foreach (split //, $S)
push @_A, $_A[-1] + ($_ eq 'A' ? 1 : 0);
push @_C, $_C[-1] + ($_ eq 'C' ? 1 : 0);
push @_G, $_G[-1] + ($_ eq 'G' ? 1 : 0);
foreach my $i (0..$#P)
my $from_index = $P[$i];
my $to_index = $Q[$i] + 1;
if ( $_A[$to_index] - $_A[$from_index] > 0 )
push @ret, 1;
next;
if ( $_C[$to_index] - $_C[$from_index] > 0 )
push @ret, 2;
next;
if ( $_G[$to_index] - $_G[$from_index] > 0 )
push @ret, 3;
next;
push @ret, 4
return @ret;
【讨论】:
【参考方案21】:Java 100/100
class Solution
public int[] solution(String S, int[] P, int[] Q)
int qSize = Q.length;
int[] answers = new int[qSize];
char[] sequence = S.toCharArray();
int[][] occCount = new int[3][sequence.length+1];
int[] geneImpactMap = new int['G'+1];
geneImpactMap['A'] = 0;
geneImpactMap['C'] = 1;
geneImpactMap['G'] = 2;
if(sequence[0] != 'T')
occCount[geneImpactMap[sequence[0]]][0]++;
for(int i = 0; i < sequence.length; i++)
occCount[0][i+1] = occCount[0][i];
occCount[1][i+1] = occCount[1][i];
occCount[2][i+1] = occCount[2][i];
if(sequence[i] != 'T')
occCount[geneImpactMap[sequence[i]]][i+1]++;
for(int j = 0; j < qSize; j++)
for(int k = 0; k < 3; k++)
if(occCount[k][Q[j]+1] - occCount[k][P[j]] > 0)
answers[j] = k+1;
break;
answers[j] = 4;
return answers;
【讨论】:
【参考方案22】:在红宝石中 (100/100)
def interval_sum x,y,p
p[y+1] - p[x]
end
def solution(s,p,q)
#Hash of arrays with prefix sums
p_sums =
respuesta = []
%w(A C G T).each do |letter|
p_sums[letter] = Array.new s.size+1, 0
end
(0...s.size).each do |count|
%w(A C G T).each do |letter|
p_sums[letter][count+1] = p_sums[letter][count]
end if count > 0
case s[count]
when 'A'
p_sums['A'][count+1] += 1
when 'C'
p_sums['C'][count+1] += 1
when 'G'
p_sums['G'][count+1] += 1
when 'T'
p_sums['T'][count+1] += 1
end
end
(0...p.size).each do |count|
x = p[count]
y = q[count]
if interval_sum(x, y, p_sums['A']) > 0 then
respuesta << 1
next
end
if interval_sum(x, y, p_sums['C']) > 0 then
respuesta << 2
next
end
if interval_sum(x, y, p_sums['G']) > 0 then
respuesta << 3
next
end
if interval_sum(x, y, p_sums['T']) > 0 then
respuesta << 4
next
end
end
respuesta
end
【讨论】:
【参考方案23】:简单的 php 100/100 解决方案
function solution($S, $P, $Q)
$result = array();
for ($i = 0; $i < count($P); $i++)
$from = $P[$i];
$to = $Q[$i];
$length = $from >= $to ? $from - $to + 1 : $to - $from + 1;
$new = substr($S, $from, $length);
if (strpos($new, 'A') !== false)
$result[$i] = 1;
else
if (strpos($new, 'C') !== false)
$result[$i] = 2;
else
if (strpos($new, 'G') !== false)
$result[$i] = 3;
else
$result[$i] = 4;
return $result;
【讨论】:
只是我的看法,如果你做一个 strpos 这意味着额外的搜索会增加复杂性【参考方案24】:这是我的 Java (100/100) 解决方案:
class Solution
private ImpactFactorHolder[] mHolder;
private static final int A=0,C=1,G=2,T=3;
public int[] solution(String S, int[] P, int[] Q)
mHolder = createImpactHolderArray(S);
int queriesLength = P.length;
int[] result = new int[queriesLength];
for (int i = 0; i < queriesLength; ++i )
int value = 0;
if( P[i] == Q[i])
value = lookupValueForIndex(S.charAt(P[i])) + 1;
else
value = calculateMinImpactFactor(P[i], Q[i]);
result[i] = value;
return result;
public int calculateMinImpactFactor(int P, int Q)
int minImpactFactor = 3;
for (int nucleotide = A; nucleotide <= T; ++nucleotide )
int qValue = mHolder[nucleotide].mOcurrencesSum[Q];
int pValue = mHolder[nucleotide].mOcurrencesSum[P];
// handling special cases when the less value is assigned on the P index
if( P-1 >= 0 )
pValue = mHolder[nucleotide].mOcurrencesSum[P-1] == 0 ? 0 : pValue;
else if ( P == 0 )
pValue = mHolder[nucleotide].mOcurrencesSum[P] == 1 ? 0 : pValue;
if ( qValue - pValue > 0)
minImpactFactor = nucleotide;
break;
return minImpactFactor + 1;
public int lookupValueForIndex(char nucleotide)
int value = 0;
switch (nucleotide)
case 'A' :
value = A;
break;
case 'C' :
value = C;
break;
case 'G':
value = G;
break;
case 'T':
value = T;
break;
default:
break;
return value;
public ImpactFactorHolder[] createImpactHolderArray(String S)
int length = S.length();
ImpactFactorHolder[] holder = new ImpactFactorHolder[4];
holder[A] = new ImpactFactorHolder(1,'A', length);
holder[C] = new ImpactFactorHolder(2,'C', length);
holder[G] = new ImpactFactorHolder(3,'G', length);
holder[T] = new ImpactFactorHolder(4,'T', length);
int i =0;
for(char c : S.toCharArray())
int nucleotide = lookupValueForIndex(c);
++holder[nucleotide].mAcum;
holder[nucleotide].mOcurrencesSum[i] = holder[nucleotide].mAcum;
holder[A].mOcurrencesSum[i] = holder[A].mAcum;
holder[C].mOcurrencesSum[i] = holder[C].mAcum;
holder[G].mOcurrencesSum[i] = holder[G].mAcum;
holder[T].mOcurrencesSum[i] = holder[T].mAcum;
++i;
return holder;
private static class ImpactFactorHolder
public ImpactFactorHolder(int impactFactor, char nucleotide, int length)
mImpactFactor = impactFactor;
mNucleotide = nucleotide;
mOcurrencesSum = new int[length];
mAcum = 0;
int mImpactFactor;
char mNucleotide;
int[] mOcurrencesSum;
int mAcum;
链接:https://codility.com/demo/results/demoJFB5EV-EG8/ 我期待着实现类似于@Abhishek Kumar 解决方案的分段树
【讨论】:
【参考方案25】:我的 C++ 解决方案
vector<int> solution(string &S, vector<int> &P, vector<int> &Q)
vector<int> impactCount_A(S.size()+1, 0);
vector<int> impactCount_C(S.size()+1, 0);
vector<int> impactCount_G(S.size()+1, 0);
int lastTotal_A = 0;
int lastTotal_C = 0;
int lastTotal_G = 0;
for (int i = (signed)S.size()-1; i >= 0; --i)
switch(S[i])
case 'A':
++lastTotal_A;
break;
case 'C':
++lastTotal_C;
break;
case 'G':
++lastTotal_G;
break;
;
impactCount_A[i] = lastTotal_A;
impactCount_C[i] = lastTotal_C;
impactCount_G[i] = lastTotal_G;
vector<int> results(P.size(), 0);
for (int i = 0; i < P.size(); ++i)
int pIndex = P[i];
int qIndex = Q[i];
int numA = impactCount_A[pIndex]-impactCount_A[qIndex+1];
int numC = impactCount_C[pIndex]-impactCount_C[qIndex+1];
int numG = impactCount_G[pIndex]-impactCount_G[qIndex+1];
if (numA > 0)
results[i] = 1;
else if (numC > 0)
results[i] = 2;
else if (numG > 0)
results[i] = 3;
else
results[i] = 4;
return results;
【讨论】:
【参考方案26】:/* 100/100 解决方案 C++。 使用前缀总和。首先在 nuc 变量中将字符转换为整数。然后在一个二维向量中,我们在其各自的 prefix_sum[s][x] 中考虑每个核苷 x 在 S 中的出现。之后我们只需要找出每个区间 K 中出现的较低的核苷。
*/ . 向量解(字符串 &S, 向量 &P, 向量 &Q)
int n=S.size();
int m=P.size();
vector<vector<int> > prefix_sum(n+1,vector<int>(4,0));
int nuc;
//prefix occurrence sum
for (int s=0;s<n; s++)
nuc = S.at(s) == 'A' ? 1 : (S.at(s) == 'C' ? 2 : (S.at(s) == 'G' ? 3 : 4) );
for (int u=0;u<4;u++)
prefix_sum[s+1][u] = prefix_sum[s][u] + ((u+1)==nuc?1:0);
//find minimal impact factor in each interval K
int lower_impact_factor;
for (int k=0;k<m;k++)
lower_impact_factor=4;
for (int u=2;u>=0;u--)
if (prefix_sum[Q[k]+1][u] - prefix_sum[P[k]][u] != 0)
lower_impact_factor = u+1;
P[k]=lower_impact_factor;
return P;
【讨论】:
【参考方案27】: static public int[] solution(String S, int[] P, int[] Q)
// write your code in Java SE 8
int A[] = new int[S.length() + 1], C[] = new int[S.length() + 1], G[] = new int[S.length() + 1];
int last_a = 0, last_c = 0, last_g = 0;
int results[] = new int[P.length];
int p = 0, q = 0;
for (int i = S.length() - 1; i >= 0; i -= 1)
switch (S.charAt(i))
case 'A':
last_a += 1;
break;
case 'C':
last_c += 1;
break;
case 'G':
last_g += 1;
break;
A[i] = last_a;
G[i] = last_g;
C[i] = last_c;
for (int i = 0; i < P.length; i++)
p = P[i];
q = Q[i];
if (A[p] - A[q + 1] > 0)
results[i] = 1;
else if (C[p] - C[q + 1] > 0)
results[i] = 2;
else if (G[p] - G[q + 1] > 0)
results[i] = 3;
else
results[i] = 4;
return results;
【讨论】:
【参考方案28】:scala 解决方案 100/100
import scala.annotation.switch
import scala.collection.mutable
object Solution
def solution(s: String, p: Array[Int], q: Array[Int]): Array[Int] =
val n = s.length
def arr = mutable.ArrayBuffer.fill(n + 1)(0L)
val a = arr
val c = arr
val g = arr
val t = arr
for (i <- 1 to n)
def inc(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1) + 1L
def shift(z: mutable.ArrayBuffer[Long]): Unit = z(i) = z(i - 1)
val char = s(i - 1)
(char: @switch) match
case 'A' => inc(a); shift(c); shift(g); shift(t);
case 'C' => shift(a); inc(c); shift(g); shift(t);
case 'G' => shift(a); shift(c); inc(g); shift(t);
case 'T' => shift(a); shift(c); shift(g); inc(t);
val r = mutable.ArrayBuffer.fill(p.length)(0)
for (i <- p.indices)
val start = p(i)
val end = q(i) + 1
r(i) =
if (a(start) != a(end)) 1
else if (c(start) != c(end)) 2
else if (g(start) != g(end)) 3
else if (t(start) != t(end)) 4
else 0
r.toArray
【讨论】:
【参考方案29】:我想我正在使用动态编程。这是我的解决方案。空间小。代码很干净,只是展示我的想法。
class Solution
public int[] solution(String S, int[] P, int[] Q)
int[] preDominator = new int[S.length()];
int A = -1;
int C = -1;
int G = -1;
int T = -1;
for (int i = 0; i < S.length(); i++)
char c = S.charAt(i);
if (c == 'A')
A = i;
preDominator[i] = -1;
else if (c == 'C')
C = i;
preDominator[i] = A;
else if (c == 'G')
G = i;
preDominator[i] = Math.max(A, C);
else
T = i;
preDominator[i] = Math.max(Math.max(A, C), G);
int N = preDominator.length;
int M = Q.length;
int[] result = new int[M];
for (int i = 0; i < M; i++)
int p = P[i];
int q = Math.min(N, Q[i]);
for (int j = q;;)
if (preDominator[j] < p)
char c = S.charAt(j);
if (c == 'A')
result[i] = 1;
else if (c == 'C')
result[i] = 2;
else if (c == 'G')
result[i] = 3;
else
result[i] = 4;
break;
j = preDominator[j];
return result;
【讨论】:
【参考方案30】:我在 Kotlin 中实现了 Segment Tree 解决方案
import kotlin.math.*
fun solution(S: String, P: IntArray, Q: IntArray): IntArray
val a = IntArray(S.length)
for (i in S.indices)
a[i] = when (S[i])
'A' -> 1
'C' -> 2
'G' -> 3
'T' -> 4
else -> throw IllegalStateException()
val segmentTree = IntArray(2*nextPowerOfTwo(S.length)-1)
constructSegmentTree(a, segmentTree, 0, a.size-1, 0)
val result = IntArray(P.size)
for (i in P.indices)
result[i] = rangeMinQuery(segmentTree, P[i], Q[i], 0, a.size-1, 0)
return result
fun constructSegmentTree(input: IntArray, segmentTree: IntArray, low: Int, high: Int, pos: Int)
if (low == high)
segmentTree[pos] = input[low]
return
val mid = (low + high)/2
constructSegmentTree(input, segmentTree, low, mid, 2*pos+1)
constructSegmentTree(input, segmentTree, mid+1, high, 2*pos+2)
segmentTree[pos] = min(segmentTree[2*pos+1], segmentTree[2*pos+2])
fun rangeMinQuery(segmentTree: IntArray, qlow:Int, qhigh:Int ,low:Int, high:Int, pos:Int): Int
if (qlow <= low && qhigh >= high)
return segmentTree[pos]
if (qlow > high || qhigh < low)
return Int.MAX_VALUE
val mid = (low + high)/2
return min(rangeMinQuery(segmentTree, qlow, qhigh, low, mid, 2*pos+1), rangeMinQuery(segmentTree, qlow, qhigh, mid+1, high, 2*pos+2))
fun nextPowerOfTwo(n:Int): Int
var count = 0
var number = n
if (number > 0 && (number and (number - 1)) == 0) return number
while (number != 0)
number = number shr 1
count++
return 1 shl count
【讨论】:
以上是关于java codility 训练基因组范围查询的主要内容,如果未能解决你的问题,请参考以下文章
Codility - CountDiv JavaScript解决方案