给定一些美元价值时如何找到所有硬币组合[关闭]
Posted
技术标签:
【中文标题】给定一些美元价值时如何找到所有硬币组合[关闭]【英文标题】:How to find all combinations of coins when given some dollar value [closed] 【发布时间】:2010-11-09 13:35:46 【问题描述】:我找到了几个月前为面试准备而编写的一段代码。
根据我的评论,它试图解决这个问题:
给定一些以美分为单位的美元价值(例如 200 = 2 美元,1000 = 10 美元),找出构成美元价值的所有硬币组合。 只允许使用便士 (1 美分)、镍 (5 美分)、一角硬币 (10 美分) 和 25 美分 (25 美分)。
例如,如果给出 100,答案应该是:
4 quarter(s) 0 dime(s) 0 nickel(s) 0 pennies
3 quarter(s) 1 dime(s) 0 nickel(s) 15 pennies
etc.
我相信这可以通过迭代和递归的方式来解决。我的递归解决方案有很多错误,我想知道其他人将如何解决这个问题。这个问题的难点在于使其尽可能高效。
【问题讨论】:
@akappa:便士 = 1 美分;镍 = 5 美分;一角钱 = 10 美分;季度 = 25 美分 :) @John T:打码高尔夫?我从来没有听说过这个词!无论如何,我希望看到一些有趣的答案,因为 SO 社区可以解决任何问题 我回家后也会尝试发布我的答案...仍在工作,我不应该在 SO 上花费太多时间。 @blee 代码高尔夫是指使用您选择的编程语言以尽可能少的字符解决问题。以下是本网站上已完成的一些操作:***.com/search?q=code+golfcode-golf
=> ***.com/questions/tagged/code-golf
【参考方案1】:
很久以前我研究过一次,你可以阅读我的little write-up on it。这是Mathematica source。
通过使用生成函数,您可以获得问题的封闭形式的常数时间解。 Graham、Knuth 和 Patashnik 的 具体数学 就是为此而写的书,其中包含对该问题的相当广泛的讨论。本质上,您定义了一个多项式,其中第 n 个系数是为 n 美元进行更改的方式的数量。
文章的第 4-5 页展示了如何使用 Mathematica(或任何其他方便的计算机代数系统)在几秒钟内用三行代码计算出 10^10^6 美元的答案。
(这已经足够久远了,在 75Mhz Pentium 上只需要几秒钟......)
【讨论】:
好答案,但有一些小问题:请注意 (1) 这给出了 number 种方式,而由于某种原因,该问题要求提供所有方式的实际集合。当然,不可能在多项式时间内找到集合,因为输出本身具有超多项式多项式 (2) 生成函数是否是“封闭形式”是有争议的(参见 Herbert Wilf 的精彩著作 Generatingfunctionology : math.upenn.edu/~wilf/DownldGF.html) 如果你的意思是像 (1+√5)^n 这样的表达式,计算需要 Ω(log n) 时间,而不是恒定时间。 对动态规划的温和介绍。另外,我鼓励任何有序列问题的人阅读generatingfunctionology。 非常感谢安德鲁...这个解释帮助了我很多...在下面发布 scala 函数..如果有人需要它 我相信一开始的问题需要稍微修正,因为它问的是“......使用 1 美分、10 美分、25 美分、50 美分和 100 美分硬币?”但是随后的文章将集合a
定义为f
但a = 1,5,10,25,50,100
的域。美分硬币列表中应该有一个 5-。否则写得很棒,谢谢!
@rbrtl 哇,你是对的,感谢您注意到这一点!我会更新它...【参考方案2】:
注意:这里只显示路数。
Scala 函数:
def countChange(money: Int, coins: List[Int]): Int =
if (money == 0) 1
else if (coins.isEmpty || money < 0) 0
else countChange(money - coins.head, coins) + countChange(money, coins.tail)
【讨论】:
真的有一种方法可以改变0吗?我想没有办法做到这一点。 源于多项式解的数量n1 * coins(0) + n2 * coins(1) + ... + nN * coins(N-1) = money
。因此对于money=0
和coins=List(1,2,5,10)
,组合(n1, n2, n3, n4)
的计数为1,解决方案为(0, 0, 0, 0)
。
我无法理解为什么这个实现有效。有人可以解释一下背后的算法吗?
这绝对是coursera scala课程练习1第3题的准确答案。
我相信,如果money == 0
但coins.isEmpty
,它不应该算作一个sol'n。因此,如果 coins.isEmpty || money < 0
条件首先被 ck'd,则算法可能会更好地服务。【参考方案3】:
我倾向于递归解决方案。您有一些面额列表,如果最小的面额可以平分任何剩余的货币金额,这应该可以正常工作。
基本上,您从最大面额到最小面额。 递归,
-
您当前有一个要填写的总数,以及一个最大的面额(还剩 1 个以上)。
如果只剩下 1 个面额,则只有一种方法可以填充总数。您可以使用当前面额的 0 到 k 个副本,这样 k * cur denomination
对于 0 到 k,使用修改后的总和新的最大面额调用函数。
将结果从 0 加到 k。这就是您可以从当前面额向下填充总数的多少种方式。返回此号码。
这是我提出的问题的 python 版本,售价 200 美分。我有 1463 种方式。此版本会打印所有组合和最终总数。
#!/usr/bin/python
# find the number of ways to reach a total with the given number of combinations
cents = 200
denominations = [25, 10, 5, 1]
names = 25: "quarter(s)", 10: "dime(s)", 5 : "nickel(s)", 1 : "pennies"
def count_combs(left, i, comb, add):
if add: comb.append(add)
if left == 0 or (i+1) == len(denominations):
if (i+1) == len(denominations) and left > 0:
if left % denominations[i]:
return 0
comb.append( (left/denominations[i], demoninations[i]) )
i += 1
while i < len(denominations):
comb.append( (0, denominations[i]) )
i += 1
print(" ".join("%d %s" % (n,names[c]) for (n,c) in comb))
return 1
cur = denominations[i]
return sum(count_combs(left-x*cur, i+1, comb[:], (x,cur)) for x in range(0, int(left/cur)+1))
count_combs(cents, 0, [], None)
【讨论】:
没跑过,但通过你的逻辑,它是有道理的:) 您可以将函数的最后两行替换为“return sum(count_combs(...) for ...)” - 这样列表根本不会被具体化。 :) 感谢您的提示。我一直对收紧代码的方法很感兴趣。 正如another question 中所讨论的,如果denominations
的列表没有1
作为最后一个值,则此代码将给出不正确的输出。您可以在最里面的 if
块中添加少量代码来修复它(正如我在对另一个问题的回答中所描述的那样)。【参考方案4】:
Scala 函数:
def countChange(money: Int, coins: List[Int]): Int =
def loop(money: Int, lcoins: List[Int], count: Int): Int =
// if there are no more coins or if we run out of money ... return 0
if ( lcoins.isEmpty || money < 0) 0
else
if (money == 0 ) count + 1
/* if the recursive subtraction leads to 0 money left - a prefect division hence return count +1 */
else
/* keep iterating ... sum over money and the rest of the coins and money - the first item and the full set of coins left*/
loop(money, lcoins.tail,count) + loop(money - lcoins.head,lcoins, count)
val x = loop(money, coins, 0)
Console println x
x
【讨论】:
谢谢!这是一个很好的开始。但是,我认为当“钱”开始为 0 时这会失败 :)。【参考方案5】:这里有一些绝对简单的 C++ 代码来解决要求显示所有组合的问题。
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
if (argc != 2)
printf("usage: change amount-in-cents\n");
return 1;
int total = atoi(argv[1]);
printf("quarter\tdime\tnickle\tpenny\tto make %d\n", total);
int combos = 0;
for (int q = 0; q <= total / 25; q++)
int total_less_q = total - q * 25;
for (int d = 0; d <= total_less_q / 10; d++)
int total_less_q_d = total_less_q - d * 10;
for (int n = 0; n <= total_less_q_d / 5; n++)
int p = total_less_q_d - n * 5;
printf("%d\t%d\t%d\t%d\n", q, d, n, p);
combos++;
printf("%d combinations\n", combos);
return 0;
但我对仅计算组合数量的子问题非常感兴趣。我怀疑它有一个封闭形式的方程。
【讨论】:
这肯定是 C,而不是 C++。 @George Phillips 你能解释一下吗? 我认为这很简单。基本上,这个想法是迭代所有季度(使用 0,1,2 .. max),然后根据使用的季度等遍历所有角钱。 这个解决方案的缺点是:如果有 50-cent、100-cent、500-cent 硬币,那么我们必须使用 6 级循环...... 这很糟糕,如果你有一个动态的面额,或者你想添加另一个面额,那么这将不起作用。【参考方案6】:子问题是一个典型的动态规划问题。
/* Q: Given some dollar value in cents (e.g. 200 = 2 dollars, 1000 = 10 dollars),
find the number of combinations of coins that make up the dollar value.
There are only penny, nickel, dime, and quarter.
(quarter = 25 cents, dime = 10 cents, nickel = 5 cents, penny = 1 cent) */
/* A:
Reference: http://andrew.neitsch.ca/publications/m496pres1.nb.pdf
f(n, k): number of ways of making change for n cents, using only the first
k+1 types of coins.
+- 0, n < 0 || k < 0
f(n, k) = |- 1, n == 0
+- f(n, k-1) + f(n-C[k], k), else
*/
#include <iostream>
#include <vector>
using namespace std;
int C[] = 1, 5, 10, 25;
// Recursive: very slow, O(2^n)
int f(int n, int k)
if (n < 0 || k < 0)
return 0;
if (n == 0)
return 1;
return f(n, k-1) + f(n-C[k], k);
// Non-recursive: fast, but still O(nk)
int f_NonRec(int n, int k)
vector<vector<int> > table(n+1, vector<int>(k+1, 1));
for (int i = 0; i <= n; ++i)
for (int j = 0; j <= k; ++j)
if (i < 0 || j < 0) // Impossible, for illustration purpose
table[i][j] = 0;
else if (i == 0 || j == 0) // Very Important
table[i][j] = 1;
else
// The recursion. Be careful with the vector boundary
table[i][j] = table[i][j-1] +
(i < C[j] ? 0 : table[i-C[j]][j]);
return table[n][k];
int main()
cout << f(100, 3) << ", " << f_NonRec(100, 3) << endl;
cout << f(200, 3) << ", " << f_NonRec(200, 3) << endl;
cout << f(1000, 3) << ", " << f_NonRec(1000, 3) << endl;
return 0;
【讨论】:
您的动态解决方案要求 k 是 C 的长度减去 1。有点混乱。您可以轻松更改它以支持 C 的实际长度。【参考方案7】:代码是用Java来解决这个问题的,它也可以工作......这个方法可能不是一个好主意,因为循环太多,但它确实是一个直接的方法。
public class RepresentCents
public static int sum(int n)
int count = 0;
for (int i = 0; i <= n / 25; i++)
for (int j = 0; j <= n / 10; j++)
for (int k = 0; k <= n / 5; k++)
for (int l = 0; l <= n; l++)
int v = i * 25 + j * 10 + k * 5 + l;
if (v == n)
count++;
else if (v > n)
break;
return count;
public static void main(String[] args)
System.out.println(sum(100));
【讨论】:
【参考方案8】:这是一个非常古老的问题,但我在 java 中提出了一个递归解决方案,它似乎比其他所有解决方案都小,所以这里 -
public static void printAll(int ind, int[] denom,int N,int[] vals)
if(N==0)
System.out.println(Arrays.toString(vals));
return;
if(ind == (denom.length))return;
int currdenom = denom[ind];
for(int i=0;i<=(N/currdenom);i++)
vals[ind] = i;
printAll(ind+1,denom,N-i*currdenom,vals);
改进:
public static void printAllCents(int ind, int[] denom,int N,int[] vals)
if(N==0)
if(ind < denom.length)
for(int i=ind;i<denom.length;i++)
vals[i] = 0;
System.out.println(Arrays.toString(vals));
return;
if(ind == (denom.length))
vals[ind-1] = 0;
return;
int currdenom = denom[ind];
for(int i=0;i<=(N/currdenom);i++)
vals[ind] = i;
printAllCents(ind+1,denom,N-i*currdenom,vals);
【讨论】:
【参考方案9】:让 C(i,J) 使用集合 J 中的值生成 i 美分的组合集合。
你可以这样定义C:
(first(J) 以一种确定的方式获取集合中的一个元素)
事实证明,这是一个非常递归的函数……如果你使用记忆化,效率相当高;)
【讨论】:
是的,这(某种意义上的“动态规划”)将是最佳解决方案。 你是对的:把 J 作为一个列表而不是一个集合:然后 first(J) 给你第一个元素, J \ first(J) 给你列表的其余部分. 这是什么形式的数学?【参考方案10】:semi-hack 解决独特组合问题 - 强制降序:
$denoms = [1,5,10,25] def all_combs(sum,last) 如果 sum == 0 则返回 1 返回 $denoms.select|d| d &le sum && d &le last.inject(0) |total,denom| 总计+all_combs(sum-denom,denom) 结尾
这将运行缓慢,因为它不会被记忆,但你明白了。
【讨论】:
【参考方案11】:# short and sweet with O(n) table memory
#include <iostream>
#include <vector>
int count( std::vector<int> s, int n )
std::vector<int> table(n+1,0);
table[0] = 1;
for ( auto& k : s )
for(int j=k; j<=n; ++j)
table[j] += table[j-k];
return table[n];
int main()
std::cout << count(25, 10, 5, 1, 100) << std::endl;
return 0;
【讨论】:
【参考方案12】:这是我在 Python 中的答案。它不使用递归:
def crossprod (list1, list2):
output = 0
for i in range(0,len(list1)):
output += list1[i]*list2[i]
return output
def breakit(target, coins):
coinslimit = [(target / coins[i]) for i in range(0,len(coins))]
count = 0
temp = []
for i in range(0,len(coins)):
temp.append([j for j in range(0,coinslimit[i]+1)])
r=[[]]
for x in temp:
t = []
for y in x:
for i in r:
t.append(i+[y])
r = t
for targets in r:
if crossprod(targets, coins) == target:
print targets
count +=1
return count
if __name__ == "__main__":
coins = [25,10,5,1]
target = 78
print breakit(target, coins)
示例输出
...
1 ( 10 cents) 2 ( 5 cents) 58 ( 1 cents)
4 ( 5 cents) 58 ( 1 cents)
1 ( 10 cents) 1 ( 5 cents) 63 ( 1 cents)
3 ( 5 cents) 63 ( 1 cents)
1 ( 10 cents) 68 ( 1 cents)
2 ( 5 cents) 68 ( 1 cents)
1 ( 5 cents) 73 ( 1 cents)
78 ( 1 cents)
Number of solutions = 121
【讨论】:
【参考方案13】:var countChange = function (money,coins)
function countChangeSub(money,coins,n)
if(money==0) return 1;
if(money<0 || coins.length ==n) return 0;
return countChangeSub(money-coins[n],coins,n) + countChangeSub(money,coins,n+1);
return countChangeSub(money,coins,0);
【讨论】:
【参考方案14】:两者:从高到低遍历所有面额,取其中一个面额,从要求的总数中减去,然后在余数上递归(将可用面额限制为等于或低于当前迭代值。)
【讨论】:
【参考方案15】:如果货币系统允许,一个简单的greedy algorithm 会尽可能多地获取每种硬币,从价值最高的货币开始。
否则,需要动态规划来快速找到最优解,因为这个问题本质上是knapsack problem。
例如,如果一个货币系统有硬币:13, 8, 1
,贪婪的解决方案会将 24 的零钱变成13, 8, 1, 1, 1
,但真正的最优解决方案是8, 8, 8
编辑:我认为我们正在以最佳方式进行更改,而不是列出所有更改一美元的方法。我最近的采访询问了如何做出改变,所以我在读完这个问题之前就跳到了前面。
【讨论】:
问题不一定是 1 美元——它可能是 2 或 23,所以你的解决方案仍然是唯一正确的。【参考方案16】:我知道这是一个非常古老的问题。我正在寻找正确的答案,但找不到任何简单而令人满意的东西。花了我一些时间,但能够记下一些东西。
function denomination(coins, original_amount)
var original_amount = original_amount;
var original_best = [ ];
for(var i=0;i<coins.length; i++)
var amount = original_amount;
var best = [ ];
var tempBest = [ ]
while(coins[i]<=amount)
amount = amount - coins[i];
best.push(coins[i]);
if(amount>0 && coins.length>1)
tempBest = denomination(coins.slice(0,i).concat(coins.slice(i+1,coins.length)), amount);
//best = best.concat(denomination(coins.splice(i,1), amount));
if(tempBest.length!=0 || (best.length!=0 && amount==0))
best = best.concat(tempBest);
if(original_best.length==0 )
original_best = best
else if(original_best.length > best.length )
original_best = best;
return original_best;
denomination( [1,10,3,9] , 19 );
这是一个 javascript 解决方案并使用递归。
【讨论】:
这个解决方案只能找到一个面额。问题是找到“所有”教派。【参考方案17】:在 Scala 编程语言中,我会这样做:
def countChange(money: Int, coins: List[Int]): Int =
money match
case 0 => 1
case x if x < 0 => 0
case x if x >= 1 && coins.isEmpty => 0
case _ => countChange(money, coins.tail) + countChange(money - coins.head, coins)
【讨论】:
【参考方案18】:这是一个简单的递归算法,它先取一张钞票,然后递归取一张较小的钞票,直到达到总和,然后再取另一张相同面额的钞票,然后再次递归。请参阅下面的示例输出以进行说明。
var bills = new int[] 100, 50, 20, 10, 5, 1 ;
void PrintAllWaysToMakeChange(int sumSoFar, int minBill, string changeSoFar)
for (int i = minBill; i < bills.Length; i++)
var change = changeSoFar;
var sum = sumSoFar;
while (sum > 0)
if (!string.IsNullOrEmpty(change)) change += " + ";
change += bills[i];
sum -= bills[i];
if (sum > 0)
PrintAllWaysToMakeChange(sum, i + 1, change);
if (sum == 0)
Console.WriteLine(change);
PrintAllWaysToMakeChange(15, 0, "");
打印以下内容:
10 + 5
10 + 1 + 1 + 1 + 1 + 1
5 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
5 + 5 + 1 + 1 + 1 + 1 + 1
5 + 5 + 5
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
【讨论】:
【参考方案19】:呃,我现在觉得自己很愚蠢。下面有一个过于复杂的解决方案,我将保留它,因为它毕竟是一个解决方案。一个简单的解决方案是:
// Generate a pretty string
val coinNames = List(("quarter", "quarters"),
("dime", "dimes"),
("nickel", "nickels"),
("penny", "pennies"))
def coinsString =
Function.tupled((quarters: Int, dimes: Int, nickels:Int, pennies: Int) => (
List(quarters, dimes, nickels, pennies)
zip coinNames // join with names
map (t => (if (t._1 != 1) (t._1, t._2._2) else (t._1, t._2._1))) // correct for number
map (t => t._1 + " " + t._2) // qty name
mkString " "
))
def allCombinations(amount: Int) =
(forquarters <- 0 to (amount / 25)
dimes <- 0 to ((amount - 25*quarters) / 10)
nickels <- 0 to ((amount - 25*quarters - 10*dimes) / 5)
yield (quarters, dimes, nickels, amount - 25*quarters - 10*dimes - 5*nickels)
) map coinsString mkString "\n"
这是另一个解决方案。该解决方案基于观察到每个硬币都是其他硬币的倍数,因此可以用它们来表示它们。
// Just to make things a bit more readable, as these routines will access
// arrays a lot
val coinValues = List(25, 10, 5, 1)
val coinNames = List(("quarter", "quarters"),
("dime", "dimes"),
("nickel", "nickels"),
("penny", "pennies"))
val List(quarter, dime, nickel, penny) = coinValues.indices.toList
// Find the combination that uses the least amount of coins
def leastCoins(amount: Int): Array[Int] =
((List(amount) /: coinValues) (list, coinValue) =>
val currentAmount = list.head
val numberOfCoins = currentAmount / coinValue
val remainingAmount = currentAmount % coinValue
remainingAmount :: numberOfCoins :: list.tail
).tail.reverse.toArray
// Helper function. Adjust a certain amount of coins by
// adding or subtracting coins of each type; this could
// be made to receive a list of adjustments, but for so
// few types of coins, it's not worth it.
def adjust(base: Array[Int],
quarters: Int,
dimes: Int,
nickels: Int,
pennies: Int): Array[Int] =
Array(base(quarter) + quarters,
base(dime) + dimes,
base(nickel) + nickels,
base(penny) + pennies)
// We decrease the amount of quarters by one this way
def decreaseQuarter(base: Array[Int]): Array[Int] =
adjust(base, -1, +2, +1, 0)
// Dimes are decreased this way
def decreaseDime(base: Array[Int]): Array[Int] =
adjust(base, 0, -1, +2, 0)
// And here is how we decrease Nickels
def decreaseNickel(base: Array[Int]): Array[Int] =
adjust(base, 0, 0, -1, +5)
// This will help us find the proper decrease function
val decrease = Map(quarter -> decreaseQuarter _,
dime -> decreaseDime _,
nickel -> decreaseNickel _)
// Given a base amount of coins of each type, and the type of coin,
// we'll produce a list of coin amounts for each quantity of that particular
// coin type, up to the "base" amount
def coinSpan(base: Array[Int], whichCoin: Int) =
(List(base) /: (0 until base(whichCoin)).toList) (list, _) =>
decrease(whichCoin)(list.head) :: list
// Generate a pretty string
def coinsString(base: Array[Int]) = (
base
zip coinNames // join with names
map (t => (if (t._1 != 1) (t._1, t._2._2) else (t._1, t._2._1))) // correct for number
map (t => t._1 + " " + t._2)
mkString " "
)
// So, get a base amount, compute a list for all quarters variations of that base,
// then, for each combination, compute all variations of dimes, and then repeat
// for all variations of nickels.
def allCombinations(amount: Int) =
val base = leastCoins(amount)
val allQuarters = coinSpan(base, quarter)
val allDimes = allQuarters flatMap (base => coinSpan(base, dime))
val allNickels = allDimes flatMap (base => coinSpan(base, nickel))
allNickels map coinsString mkString "\n"
所以,以 37 个硬币为例:
scala> println(allCombinations(37))
0 quarter 0 dimes 0 nickels 37 pennies
0 quarter 0 dimes 1 nickel 32 pennies
0 quarter 0 dimes 2 nickels 27 pennies
0 quarter 0 dimes 3 nickels 22 pennies
0 quarter 0 dimes 4 nickels 17 pennies
0 quarter 0 dimes 5 nickels 12 pennies
0 quarter 0 dimes 6 nickels 7 pennies
0 quarter 0 dimes 7 nickels 2 pennies
0 quarter 1 dime 0 nickels 27 pennies
0 quarter 1 dime 1 nickel 22 pennies
0 quarter 1 dime 2 nickels 17 pennies
0 quarter 1 dime 3 nickels 12 pennies
0 quarter 1 dime 4 nickels 7 pennies
0 quarter 1 dime 5 nickels 2 pennies
0 quarter 2 dimes 0 nickels 17 pennies
0 quarter 2 dimes 1 nickel 12 pennies
0 quarter 2 dimes 2 nickels 7 pennies
0 quarter 2 dimes 3 nickels 2 pennies
0 quarter 3 dimes 0 nickels 7 pennies
0 quarter 3 dimes 1 nickel 2 pennies
1 quarter 0 dimes 0 nickels 12 pennies
1 quarter 0 dimes 1 nickel 7 pennies
1 quarter 0 dimes 2 nickels 2 pennies
1 quarter 1 dime 0 nickels 2 pennies
【讨论】:
【参考方案20】:This blog entry of mine 解决了来自XKCD comic 的数字的类似背包问题。对 items
dict 和 exactcost
值的简单更改也将为您的问题提供所有解决方案。
如果问题是找到成本最低的找零,那么对于硬币和目标金额的某些组合,使用尽可能多的最高价值硬币的天真贪心算法很可能会失败。例如,如果有值 1、3 和 4 的硬币;并且目标数量是 6,那么贪心算法可能会建议价值 4、1 和 1 的三个硬币,但很容易看出您可以使用两个硬币,每个硬币的价值为 3。
稻田。【讨论】:
【参考方案21】:public class Coins
static int ac = 421;
static int bc = 311;
static int cc = 11;
static int target = 4000;
public static void main(String[] args)
method2();
public static void method2()
//running time n^2
int da = target/ac;
int db = target/bc;
for(int i=0;i<=da;i++)
for(int j=0;j<=db;j++)
int rem = target-(i*ac+j*bc);
if(rem < 0)
break;
else
if(rem%cc==0)
System.out.format("\n%d, %d, %d ---- %d + %d + %d = %d \n", i, j, rem/cc, i*ac, j*bc, (rem/cc)*cc, target);
【讨论】:
【参考方案22】:我在 O'reily 的“Python For Data Analysis”一书中找到了这段简洁的代码。它使用惰性实现和 int 比较,我认为它可以修改为使用小数的其他面额。告诉我它是如何为您工作的!
def make_change(amount, coins=[1, 5, 10, 25], hand=None):
hand = [] if hand is None else hand
if amount == 0:
yield hand
for coin in coins:
# ensures we don't give too much change, and combinations are unique
if coin > amount or (len(hand) > 0 and hand[-1] < coin):
continue
for result in make_change(amount - coin, coins=coins,
hand=hand + [coin]):
yield result
【讨论】:
【参考方案23】:这是子涵回答的改进。当面额只有 1 美分时,就会出现大量不必要的循环。
它直观且非递归。
public static int Ways2PayNCents(int n)
int numberOfWays=0;
int cent, nickel, dime, quarter;
for (quarter = 0; quarter <= n/25; quarter++)
for (dime = 0; dime <= n/10; dime++)
for (nickel = 0; nickel <= n/5; nickel++)
cent = n - (quarter * 25 + dime * 10 + nickel * 5);
if (cent >= 0)
numberOfWays += 1;
Console.WriteLine("0,1,2,3", quarter, dime, nickel, cent);
return numberOfWays;
【讨论】:
你不能概括这个解决方案,所以例如一个新元素出现在这种情况下你必须添加另一个 for 循环【参考方案24】:简单的 java 解决方案:
public static void main(String[] args)
int[] denoms = 4,2,3,1;
int[] vals = new int[denoms.length];
int target = 6;
printCombinations(0, denoms, target, vals);
public static void printCombinations(int index, int[] denom,int target, int[] vals)
if(target==0)
System.out.println(Arrays.toString(vals));
return;
if(index == denom.length) return;
int currDenom = denom[index];
for(int i = 0; i*currDenom <= target;i++)
vals[index] = i;
printCombinations(index+1, denom, target - i*currDenom, vals);
vals[index] = 0;
【讨论】:
【参考方案25】:/*
* make a list of all distinct sets of coins of from the set of coins to
* sum up to the given target amount.
* Here the input set of coins is assumed yo be 1, 2, 4, this set MUST
* have the coins sorted in ascending order.
* Outline of the algorithm:
*
* Keep track of what the current coin is, say ccn; current number of coins
* in the partial solution, say k; current sum, say sum, obtained by adding
* ccn; sum sofar, say accsum:
* 1) Use ccn as long as it can be added without exceeding the target
* a) if current sum equals target, add cc to solution coin set, increase
* coin coin in the solution by 1, and print it and return
* b) if current sum exceeds target, ccn can't be in the solution, so
* return
* c) if neither of the above, add current coin to partial solution,
* increase k by 1 (number of coins in partial solution), and recuse
* 2) When current denomination can no longer be used, start using the
* next higher denomination coins, just like in (1)
* 3) When all denominations have been used, we are done
*/
#include <iostream>
#include <cstdlib>
using namespace std;
// int num_calls = 0;
// int num_ways = 0;
void print(const int coins[], int n);
void combine_coins(
const int denoms[], // coins sorted in ascending order
int n, // number of denominations
int target, // target sum
int accsum, // accumulated sum
int coins[], // solution set, MUST equal
// target / lowest denom coin
int k // number of coins in coins[]
)
int ccn; // current coin
int sum; // current sum
// ++num_calls;
for (int i = 0; i < n; ++i)
/*
* skip coins of lesser denomination: This is to be efficient
* and also avoid generating duplicate sequences. What we need
* is combinations and without this check we will generate
* permutations.
*/
if (k > 0 && denoms[i] < coins[k - 1])
continue; // skip coins of lesser denomination
ccn = denoms[i];
if ((sum = accsum + ccn) > target)
return; // no point trying higher denominations now
if (sum == target)
// found yet another solution
coins[k] = ccn;
print(coins, k + 1);
// ++num_ways;
return;
coins[k] = ccn;
combine_coins(denoms, n, target, sum, coins, k + 1);
void print(const int coins[], int n)
int s = 0;
for (int i = 0; i < n; ++i)
cout << coins[i] << " ";
s += coins[i];
cout << "\t = \t" << s << "\n";
int main(int argc, const char *argv[])
int denoms[] = 1, 2, 4;
int dsize = sizeof(denoms) / sizeof(denoms[0]);
int target;
if (argv[1])
target = atoi(argv[1]);
else
target = 8;
int *coins = new int[target];
combine_coins(denoms, dsize, target, 0, coins, 0);
// cout << "num calls = " << num_calls << ", num ways = " << num_ways << "\n";
return 0;
【讨论】:
【参考方案26】:这是一个 C# 函数:
public static void change(int money, List<int> coins, List<int> combination)
if(money < 0 || coins.Count == 0) return;
if (money == 0)
Console.WriteLine((String.Join("; ", combination)));
return;
List<int> copy = new List<int>(coins);
copy.RemoveAt(0);
change(money, copy, combination);
combination = new List<int>(combination) coins[0] ;
change(money - coins[0], coins, new List<int>(combination));
像这样使用它:
change(100, new List<int>() 5, 10, 25, new List<int>());
打印出来:
25; 25; 25; 25
10; 10; 10; 10; 10; 25; 25
10; 10; 10; 10; 10; 10; 10; 10; 10; 10
5; 10; 10; 25; 25; 25
5; 10; 10; 10; 10; 10; 10; 10; 25
5; 5; 10; 10; 10; 10; 25; 25
5; 5; 10; 10; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 10; 25; 25; 25
5; 5; 5; 10; 10; 10; 10; 10; 10; 25
5; 5; 5; 5; 10; 10; 10; 25; 25
5; 5; 5; 5; 10; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 25; 25; 25
5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 10; 10; 25; 25
5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 10; 25; 25
5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 25; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 25
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 10
5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5; 5
【讨论】:
输出很漂亮【参考方案27】:下面是一个查找所有货币组合的python程序。这是一个具有 order(n) 时间的动态规划解决方案。 钱是1,5,10,25
我们从第 1 行钱遍历到第 25 行钱(4 行)。如果我们只考虑货币 1,则货币 1 行包含计数 计算组合的数量。行 money 5 通过计算行 money r 中的计数来生成每一列 相同的最终钱加上前 5 个计数在它自己的行中(当前位置减 5)。行钱 10 使用行钱 5, 其中包含 1,5 的计数并添加前 10 个计数(当前位置减 10)。行钱25用行 money 10,其中包含行 money 1、5、10 加上前 25 个计数的计数。
例如,numbers[1][12] = numbers[0][12] + numbers[1][7] (7 = 12-5),结果为 3 = 1 + 2;数字[3][12] = numbers[2][12] + numbers[3][9] (-13 = 12-25) 结果为 4 = 0 + 4,因为 -13 小于 0。
def cntMoney(num):
mSz = len(money)
numbers = [[0]*(1+num) for _ in range(mSz)]
for mI in range(mSz): numbers[mI][0] = 1
for mI,m in enumerate(money):
for i in range(1,num+1):
numbers[mI][i] = numbers[mI][i-m] if i >= m else 0
if mI != 0: numbers[mI][i] += numbers[mI-1][i]
print('m,numbers',m,numbers[mI])
return numbers[mSz-1][num]
money = [1,5,10,25]
num = 12
print('money,combinations',num,cntMoney(num))
output:
('m,numbers', 1, [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
('m,numbers', 5, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3])
('m,numbers', 10, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4])
('m,numbers', 25, [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 4])
('money,combinations', 12, 4)
【讨论】:
【参考方案28】:Java 解决方案
import java.util.Arrays;
import java.util.Scanner;
public class nCents
public static void main(String[] args)
Scanner input=new Scanner(System.in);
int cents=input.nextInt();
int num_ways [][] =new int [5][cents+1];
//putting in zeroes to offset
int getCents[]=0 , 0 , 5 , 10 , 25;
Arrays.fill(num_ways[0], 0);
Arrays.fill(num_ways[1], 1);
int current_cent=0;
for(int i=2;i<num_ways.length;i++)
current_cent=getCents[i];
for(int j=1;j<num_ways[0].length;j++)
if(j-current_cent>=0)
if(j-current_cent==0)
num_ways[i][j]=num_ways[i-1][j]+1;
else
num_ways[i][j]=num_ways[i][j-current_cent]+num_ways[i-1][j];
else
num_ways[i][j]=num_ways[i-1][j];
System.out.println(num_ways[num_ways.length-1][num_ways[0].length-1]);
【讨论】:
【参考方案29】:下面的 java 解决方案也将打印不同的组合。容易明白。想法是
对于总和 5
解决办法是
5 - 5(i) times 1 = 0
if(sum = 0)
print i times 1
5 - 4(i) times 1 = 1
5 - 3 times 1 = 2
2 - 1(j) times 2 = 0
if(sum = 0)
print i times 1 and j times 2
and so on......
如果每个循环中的剩余总和小于面额即 如果剩余总和 1 小于 2,则直接中断循环
完整代码如下
如有错误请指正
public class CoinCombinbationSimple
public static void main(String[] args)
int sum = 100000;
printCombination(sum);
static void printCombination(int sum)
for (int i = sum; i >= 0; i--)
int sumCopy1 = sum - i * 1;
if (sumCopy1 == 0)
System.out.println(i + " 1 coins");
for (int j = sumCopy1 / 2; j >= 0; j--)
int sumCopy2 = sumCopy1;
if (sumCopy2 < 2)
break;
sumCopy2 = sumCopy1 - 2 * j;
if (sumCopy2 == 0)
System.out.println(i + " 1 coins " + j + " 2 coins ");
for (int k = sumCopy2 / 5; k >= 0; k--)
int sumCopy3 = sumCopy2;
if (sumCopy2 < 5)
break;
sumCopy3 = sumCopy2 - 5 * k;
if (sumCopy3 == 0)
System.out.println(i + " 1 coins " + j + " 2 coins "
+ k + " 5 coins");
【讨论】:
【参考方案30】:这是一个基于 python 的解决方案,它使用递归和记忆,导致 O(mxn) 的复杂度
def get_combinations_dynamic(self, amount, coins, memo): end_index = len(coins) - 1 memo_key = str(amount)+'->'+str(coins) if memo_key in memo: return memo[memo_key] remaining_amount = amount if amount < 0: return [] if amount == 0: return [[]] combinations = [] if len(coins) <= 1: if amount % coins[0] == 0: combination = [] for i in range(amount // coins[0]): combination.append(coins[0]) list.sort(combination) if combination not in combinations: combinations.append(combination) else: k = 0 while remaining_amount >= 0: sub_combinations = self.get_combinations_dynamic(remaining_amount, coins[:end_index], memo) for combination in sub_combinations: temp = combination[:] for i in range(k): temp.append(coins[end_index]) list.sort(temp) if temp not in combinations: combinations.append(temp) k += 1 remaining_amount -= coins[end_index] memo[memo_key] = combinations return combinations
【讨论】:
好吧,我怀疑上面有多项式运行时间。不确定我们是否可以有多项式运行时间。但我观察到的是,在许多情况下,上述运行速度比非记忆版本快。我会继续研究原因以上是关于给定一些美元价值时如何找到所有硬币组合[关闭]的主要内容,如果未能解决你的问题,请参考以下文章