为二进制分类调整 tensorflow LSTM 代码
Posted
技术标签:
【中文标题】为二进制分类调整 tensorflow LSTM 代码【英文标题】:Adapting tensorflow LSTM code for binary classification 【发布时间】:2018-10-22 04:14:38 【问题描述】:我正在尝试采用这个基本的 LSTM 模型 (https://github.com/suriyadeepan/rnn-from-scratch/blob/master/lstm.py),它是一个多对多序列模型,并将其转换为具有二进制结果的序列分类器。
我的结果和特征如下所示:
# Features:
array([[62, 91, 57, ..., 91, 43, 87],
[66, 20, 52, ..., 91, 33, 20],
[66, 45, 52, ..., 70, 91, 66],
...,
[72, 20, 20, ..., 17, 14, 66],
[91, 25, 52, ..., 52, 14, 52],
[72, 29, 66, ..., 21, 20, 52]], dtype=int32)
# Feature matrix shape
(118929, 20)
# Outcome
array([[1],
[0],
[1],
...,
[0],
[1],
[1]])
# Outcome shape
(118929, 1)
修改后的代码如下:
import tensorflow as tf
import numpy as np
import random
import argparse
import sys
from random import sample
import configparser
import os
import csv
import pickle as pkl
from sklearn.preprocessing import OneHotEncoder, LabelBinarizer, LabelEncoder
from sklearn.datasets import make_classification
def rand_batch_gen(x, y, batch_size):
while True:
sample_idx = sample(list(np.arange(len(x))), batch_size)
yield x[sample_idx], y[sample_idx]
with open('data/paulg/metadata.pkl', 'rb') as f:
metadata = pkl.load(f)
# read numpy arrays
X = np.load('data/paulg/idx_x.npy')
Y = np.load('data/paulg/idx_y.npy')
idx2w = metadata['idx2ch']
w2idx = metadata['ch2idx']
_, Y = make_classification(n_samples = 118929, n_classes = 2, n_features=2, n_redundant=0, n_informative=1, n_clusters_per_class=1)
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(Y)
Y = Y.reshape(-1,1)
BATCH_SIZE = 256
class LSTM_rnn():
def __init__(self, state_size, num_classes,
ckpt_path='ckpt/lstm1/',
model_name='lstm1'):
self.state_size = state_size
self.num_classes = num_classes
self.ckpt_path = ckpt_path
self.model_name = model_name
# build graph ops
def __graph__():
tf.reset_default_graph()
# inputs
xs_ = tf.placeholder(shape=[None, None], dtype=tf.int32)
ys_ = tf.placeholder(shape=[None, 1], dtype=tf.int32)
# embeddings
embs = tf.get_variable('emb', [100, state_size])
rnn_inputs = tf.nn.embedding_lookup(embs, xs_)
# initial hidden state
init_state = tf.placeholder(shape=[2, None, state_size], dtype=tf.float32, name='initial_state')
# initializer
xav_init = tf.contrib.layers.xavier_initializer
# params
W = tf.get_variable('W', shape=[4, self.state_size, self.state_size], initializer=xav_init())
U = tf.get_variable('U', shape=[4, self.state_size, self.state_size], initializer=xav_init())
#b = tf.get_variable('b', shape=[self.state_size], initializer=tf.constant_initializer(0.))
# step - LSTM
def step(prev, x):
# gather previous internal state and output state
st_1, ct_1 = tf.unstack(prev)
# GATES
#
# input gate
i = tf.sigmoid(tf.matmul(x,U[0]) + tf.matmul(st_1,W[0]))
# forget gate
f = tf.sigmoid(tf.matmul(x,U[1]) + tf.matmul(st_1,W[1]))
# output gate
o = tf.sigmoid(tf.matmul(x,U[2]) + tf.matmul(st_1,W[2]))
# gate weights
g = tf.tanh(tf.matmul(x,U[3]) + tf.matmul(st_1,W[3]))
# new internal cell state
ct = ct_1*f + g*i
# output state
st = tf.tanh(ct)*o
return tf.stack([st, ct])
states = tf.scan(step,
tf.transpose(rnn_inputs, [1,0,2]),
initializer=init_state)
# predictions
V = tf.get_variable('V', shape=[state_size, num_classes],
initializer=xav_init())
bo = tf.get_variable('bo', shape=[num_classes],
initializer=tf.constant_initializer(0.))
# get last state before reshape/transpose
last_state = states[-1]
# transpose
states = tf.transpose(states, [1,2,0,3])[0]
states_reshaped = tf.reshape(states, [-1, state_size])
logits = tf.matmul(states_reshaped, V) + bo
# predictions
predictions = tf.nn.softmax(logits)
# optimization
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=ys_)
loss = tf.reduce_mean(losses)
train_op = tf.train.AdagradOptimizer(learning_rate=0.1).minimize(loss)
# expose symbols
self.xs_ = xs_
self.ys_ = ys_
self.loss = loss
self.train_op = train_op
self.predictions = predictions
self.last_state = last_state
self.init_state = init_state
# build graph
__graph__()
####
# training
def train(self, train_set, epochs=100):
# training session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
train_loss = 0
try:
for i in range(epochs):
for j in range(100):
xs, ys = train_set.__next__()
batch_size = xs.shape[0]
_, train_loss_ = sess.run([self.train_op, self.loss], feed_dict =
self.xs_ : xs,
self.ys_ : ys.flatten(),
self.init_state : np.zeros([2, batch_size, self.state_size])
)
train_loss += train_loss_
print('[] loss : '.format(i,train_loss/100))
train_loss = 0
except KeyboardInterrupt:
print('interrupted by user at ' + str(i))
# training ends here;
# save checkpoint
saver = tf.train.Saver()
saver.save(sess, self.ckpt_path + self.model_name, global_step=i)
#### main function
if __name__ == '__main__':
# create the model
model = LSTM_rnn(state_size = 512, num_classes=1)
# get train set
train_set = rand_batch_gen(X, Y ,batch_size=BATCH_SIZE)
# start training
model.train(train_set)
我收到错误消息: “排名不匹配:标签排名(收到 2)应该等于 logits 排名减去 1(收到 2)。”
你知道我怎样才能成功地将这段代码用于二进制分类吗?
【问题讨论】:
【参考方案1】:我不确定您是否还有其他错误。此错误来自sparse_softmax_cross_entropy_with_logits
。在您的情况下,您的标签应该是一个长度为 118929 的向量,logit 应该是一个形状为 (118929, 2) 的矩阵。不要从make_classification
()重塑你的Y = Y.reshape(-1,1)
Y
。
【讨论】:
嗯,由于某种原因,我仍然收到该错误消息。 @Slyron 这个错误真正指的是哪一行?如果是sparse_softmax_cross_entropy_with_logits
,能否测试并显示logits
和ys_
的形状?【参考方案2】:
将形状更改为 [无] 可能会有所帮助。
ys_ = tf.placeholder(shape=[None], dtype=tf.int32)
【讨论】:
以上是关于为二进制分类调整 tensorflow LSTM 代码的主要内容,如果未能解决你的问题,请参考以下文章
在 TensorFlow 中使用多对多 LSTM 进行视频分类