如何在 Scikit-Learn 中获取 GridSearchCV() 的 OneVsRestClassifier(LinearSVC()) 的估算器键参考?
Posted
技术标签:
【中文标题】如何在 Scikit-Learn 中获取 GridSearchCV() 的 OneVsRestClassifier(LinearSVC()) 的估算器键参考?【英文标题】:How do I get the estimator key reference to OneVsRestClassifier(LinearSVC()) for GridSearchCV() in Scikit-Learn? 【发布时间】:2020-01-15 17:55:17 【问题描述】:我正在 scikit-learn 中对GridSearchCV
的超参数进行网格搜索。
这就是我准备 ML 算法及其要搜索的相关参数的方式。 LogisticRegression()
和 RandomForestClassifier()
分别用它们正确的估计键 logisticregression__
和 randomforestclassifier__
指定。
ml_algo_param_dict = \
'LR_OVR': 'clf': LogisticRegression(),
'param': [
'logisticregression__solver': ['lbfgs', 'liblinear'],
'logisticregression__penalty': ['l2'],
'logisticregression__C': [0.1, 1, 10],
'logisticregression__class_weight': [None],
'logisticregression__multi_class': ['ovr'],
'logisticregression__max_iter': [1000, 4000],
,
'logisticregression__solver': ['newton-cg'],
'logisticregression__penalty': ['l2'],
'logisticregression__C': [0.1, 1, 10],
'logisticregression__class_weight': [None],
'logisticregression__multi_class': ['ovr'],
'logisticregression__max_iter': [1000, 4000],
],
'RF_OVR': 'clf': RandomForestClassifier(),
'param': [
'randomforestclassifier__n_estimators': [100],
'randomforestclassifier__max_depth': [150, 200],
'randomforestclassifier__random_state': [888],
],
'SVC_OVR': 'clf': OneVsRestClassifier(LinearSVC()),
'param': [
'onevsrestclassifier_linearsvc__C': [100],
'onevsrestclassifier_linearsvc__max_iter': [400, 6000],
],
但是OneVsRestClassifier(LinearSVC())
呢?我尝试了很多方法(即onevsrestclassifier_linearsvc__
、onevsrestclassifier__
、linearsvc__
),但一直收到错误Check the list of available parameters with estimator.get_params().keys()
。如何找到正确的估算器键?
添加以下代码以显示 dict 的使用方式
transformer_num = Pipeline(steps=[
('imputer', SimpleImputer(strategy='median')),
('scaler', StandardScaler())])
transformer_cat = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='')),
('onehotencoder', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
transformers=[
('num', transformer_num, feature_list_num),
('cat', transformer_cat, feature_list_cat),
])
for algo_key, algo_val in ml_algo_param_dict.items():
f1 = make_scorer(f1_score , average='micro')
pipe = make_pipeline(preprocessor, algo_val['clf'])
grid = GridSearchCV(pipe, algo_val['param'], n_jobs=-1, cv=5, scoring=f1, refit=True)
grid.fit(X_train, y_train)
我试过'onevsrestclassifier_linearsvc__C', onevsrestclassifier_linearsvc_estimator__C', 'onevsrestclassifier__C', 'linearsvc__C', 'onevsrestclassifier__linearsvc__C', 'onevsrestclassifier-linearsvc__C', 'onevsrestclassifier_linearsvc_estimator__C', 'estimator__C'
,但都给了我同样的错误Check the list of available parameters with "estimator.get_params().keys()"
。
【问题讨论】:
【参考方案1】:以下是正常工作的引用命名:
'SVC_OVR': 'clf': OneVsRestClassifier(LinearSVC()),
'param': [
'onevsrestclassifier__estimator__C': [1, 10],
'onevsrestclassifier__estimator__max_iter': [10000],
],
【讨论】:
以上是关于如何在 Scikit-Learn 中获取 GridSearchCV() 的 OneVsRestClassifier(LinearSVC()) 的估算器键参考?的主要内容,如果未能解决你的问题,请参考以下文章
如何在 Scikit-Learn 中获取 GridSearchCV() 的 OneVsRestClassifier(LinearSVC()) 的估算器键参考?
scikit-learn:在管道中使用 SelectKBest 时获取选定的功能
Extjs4.1 Grid-如何在 itemdblclick 函数中获取 cellIndex
使用 scikit-learn 进行文本分类:如何从 pickle 模型中获取新文档的表示