StackingRegressor sklearn 的超参数调优
Posted
技术标签:
【中文标题】StackingRegressor sklearn 的超参数调优【英文标题】:Hyperparameter tuning for StackingRegressor sklearn 【发布时间】:2021-11-15 01:00:11 【问题描述】:在我的问题中,我想使用简单的 RandomizedSearchCV 调谐器来调整 sklearn.ensemble.StackingRegressor。由于我们需要在实例化 StackingRegressor() 时定义估算器,因此我无法在 param_distribution 随机搜索中正确定义估算器的参数空间。
我尝试了以下方法,但遇到了错误:
from sklearn.datasets import load_diabetes
from sklearn.linear_model import RidgeCV
from sklearn.svm import LinearSVR
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor,
GradientBoostingRegressor
from sklearn.ensemble import StackingRegressor
X, y = load_diabetes(return_X_y=True)
rfr = RandomForestRegressor()
gbr = GradientBoostingRegressor()
estimators = [rfr, gbr]
sreg = StackingRegressor(estimators=estimators)
params = 'rfr__max_depth': [3, 5, 10, 100],
'gbr__max_depth': [3, 5, 10, 100]
grid = RandomizedSearchCV(estimator=sreg,
param_distributions=params,
cv=3)
grid.fit(X,y)
我遇到了错误AttributeError: 'RandomForestRegressor' object has no attribute 'estimators_'
。
是否可以在 StackingRegressor 中调整不同估算器的参数?
【问题讨论】:
【参考方案1】:如果您将估算器定义为估算器名称和估算器实例的元组列表,如下所示,您的代码应该可以工作。
import pandas as pd
from sklearn.datasets import load_diabetes
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
from sklearn.ensemble import StackingRegressor
X, y = load_diabetes(return_X_y=True)
rfr = RandomForestRegressor()
gbr = GradientBoostingRegressor()
estimators = [('rfr', rfr), ('gbr', gbr)]
sreg = StackingRegressor(estimators=estimators)
params =
'rfr__max_depth': [3, 5],
'gbr__max_depth': [3, 5]
grid = RandomizedSearchCV(
estimator=sreg,
param_distributions=params,
n_iter=2,
cv=3,
verbose=1,
random_state=100
)
grid.fit(X, y)
res = pd.DataFrame(grid.cv_results_)
print(res)
# mean_fit_time std_fit_time ... std_test_score rank_test_score
# 0 1.121728 0.024188 ... 0.024546 2
# 1 1.096936 0.034377 ... 0.013047 1
【讨论】:
以上是关于StackingRegressor sklearn 的超参数调优的主要内容,如果未能解决你的问题,请参考以下文章