seaborn 热图显示轴标签,但当 df.corr 为 NaN 时没有值
Posted
技术标签:
【中文标题】seaborn 热图显示轴标签,但当 df.corr 为 NaN 时没有值【英文标题】:seaborn heatmap displays axis labels, but no values when df.corr is NaN 【发布时间】:2021-12-20 06:27:41 【问题描述】:我正在尝试为相关性提供热图,但我意识到有些是错误的。
下面是我的热图。如您所见,该操作的编号没有出现。
这是我的数据框
all_gen_cols = steamUniqueTitleGenre[['action', 'adventure','casual', 'indie','massively_multiplayer','rpg','racing','simulation','sports','strategy']]
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 1
3 1 1 0 0 1 0 0 0 0 0
4 1 0 0 0 1 1 0 0 0 1
这是生成热图的代码
def plot_correlation_heatmap(df):
corr = df.corr()
sb.set(style='white')
mask = np.zeros_like(corr, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(11,9))
cmap = sb.diverging_palette(220, 10, as_cmap=True)
sb.heatmap(corr, mask=mask, cmap=cmap, vmax=0.3, center=0,
square=True, linewidths=.5, cbar_kws="shrink": .5, annot=True)
plt.yticks(rotation=0)
plt.show()
plt.rcdefaults()
plot_correlation_heatmap(all_gen_cols)
我不确定是什么错误。
print(all_gen_cols.corr())
协同作用的结果如下。我看到 NaN 采取行动,但我不确定为什么是 Nan。
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
action NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
adventure NaN 1.000000 0.007138 0.135392 0.023964 0.239136 -0.039846 0.036345 -0.064489 0.001435
casual NaN 0.007138 1.000000 0.235474 0.003487 -0.057726 0.079943 0.161448 0.149549 0.084417
indie NaN 0.135392 0.235474 1.000000 -0.082661 0.023372 0.045006 0.064723 0.056297 0.076749
massively_multiplayer NaN 0.023964 0.003487 -0.082661 1.000000 0.160078 0.036685 0.139929 0.018444 0.074683
rpg NaN 0.239136 -0.057726 0.023372 0.160078 1.000000 -0.046970 0.044506 -0.051714 0.097123
racing NaN -0.039846 0.079943 0.045006 0.036685 -0.046970 1.000000 0.127511 0.308864 -0.012170
simulation NaN 0.036345 0.161448 0.064723 0.139929 0.044506 0.127511 1.000000 0.212622 0.208754
sports NaN -0.064489 0.149549 0.056297 0.018444 -0.051714 0.308864 0.212622 1.000000 0.020048
strategy NaN 0.001435 0.084417 0.076749 0.074683 0.097123 -0.012170 0.208754 0.020048 1.000000
下面是通过打印输出print(all_gen_cols.describe())
action adventure casual indie massively_multiplayer rpg racing simulation sports strategy
count 14570.0 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000 14570.000000
mean 1.0 0.362663 0.232189 0.657241 0.050927 0.165202 0.040288 0.121826 0.044269 0.127111
std 0.0 0.480785 0.422244 0.474648 0.219855 0.371376 0.196641 0.327096 0.205699 0.333108
min 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
25% 1.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
50% 1.0 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
75% 1.0 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
max 1.0 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
数据
这是下载数据帧的link。
action,adventure,casual,indie,massively_multiplayer,rpg,racing,simulation,sports,strategy
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,1,0,0,1,0,0,0,0,0
1,0,0,0,1,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,0,0,1,1,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,1,0,0,0,0,0
1,0,1,0,1,0,0,0,1,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,1,0,1
1,0,1,1,1,0,0,0,0,1
1,1,1,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,0,1,1,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,1,1,0,0,1,0,1
1,0,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,1,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,1,1,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,1
1,0,0,1,0,1,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,1,0,1,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,1,0,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,1,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,1
1,1,0,0,1,1,0,1,0,1
1,1,0,1,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,1,0,1,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,1,0,1,1,1,0,1,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,0,1,1,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,1,1,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,1,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,1,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,0,1,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,1,0,0,0,1,1,1,1,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,1,1,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,1,1,1,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,1,0,1,0,0,0,1,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,1,1,1,0
1,0,0,0,0,1,0,0,0,1
1,0,0,0,1,0,1,0,0,0
1,0,0,1,0,1,0,0,0,1
1,1,0,0,0,0,0,1,1,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,1,1,1,1,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,1,0
1,1,1,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,1,0
1,0,0,1,0,0,0,1,1,0
1,1,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,1,1,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,1,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,1,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,0,0,1,1,0,0,1,0,1
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,1
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,1,1,1,0
1,1,1,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,0,0,0,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,1,1,1,0,0,0
1,0,0,1,0,0,0,1,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,1,1,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,1
1,0,0,0,1,0,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,1,1,0,0,1,0,1,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,1,0,0,0,0,1,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,1,0,1,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,1,1,1,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,1,1,0,0
1,1,0,1,0,0,1,1,0,0
1,0,0,1,0,1,0,0,0,1
1,1,1,0,1,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,1,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,0,0,0,1,0,0,0
1,0,1,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,0,0,0,0,0,1,1
1,0,1,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,1
1,1,0,1,1,0,0,1,0,1
1,0,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,1,1
1,0,0,1,0,0,0,1,0,1
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,1,1,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,1,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,1,1,0,1,1,1,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,1,0,1,0,0,1,1,0,0
1,0,0,0,0,1,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,1,1,0,1,0,0
1,1,1,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,1,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,1,0,1,0,0
1,1,0,0,1,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,1,0,0,0
1,1,1,0,0,1,1,0,1,1
1,1,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,1,1,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,0,1,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,1,0,1,0
1,1,0,1,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,1,0,1
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,1,0,1,0,0,0,0,0,0
1,0,1,0,1,0,0,1,0,1
1,0,1,0,1,0,0,1,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,1,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,1
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,1,0,0
1,0,1,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,1,1,0,0,0,1
1,0,0,1,0,0,0,1,1,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,1,0,1,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,0
1,1,0,1,0,0,0,0,0,1
1,1,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,0,0,0,0,1,0,0,0,0
1,1,0,1,0,0,0,1,0,1
1,0,0,0,1,0,1,0,0,0
1,1,1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,1,0,1,0,0
1,0,0,0,0,0,0,1,0,1
1,0,0,1,0,0,0,1,1,0
1,0,0,1,0,1,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,1,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,1,0,1,0,1,0,0,0,0
1,0,1,1,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,1,1,0,0,0,0,1,0
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,1
1,0,0,1,0,0,0,0,0,1
1,1,0,1,1,1,0,0,0,0
1,0,0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,1,1,1,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,1,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,1,1,0,0,1,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,1,1,0,0,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,1,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,0,1,1,0,0,1,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,1,0,1
1,1,0,1,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0
1,0,1,0,0,0,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,1,0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,0,1,0,1,0,1,0,0
1,1,0,1,0,0,0,1,0,0
1,1,0,1,1,1,0,1,0,1
1,1,0,0,0,1,0,0,0,0
1,0,0,1,0,0,0,0,1,0
1,1,0,0,1,1,0,1,0,1
1,0,0,1,0,0,0,0,0,0
1,1,1,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,1,0,0,0,0
1,1,0,1,0,1,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,1,0,1,0,1,0,1,1,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0
1,1,1,1,0,1,0,0,0,0
【问题讨论】:
没有更多信息,很难猜测发生了什么。你能显示print(all_gen_cols.corr())
的结果吗?最好是文本,而不是图像。你能把all_gen_cols.describe()
的结果加起来吗?
@JohanC 我添加了 .corr() 和 .describe() 的结果。是的,它会产生 NaN 以供行动。我不知道它被认为是一个错误。
这不会解决结果,但seaborn
的习惯别名是sns
,而不是sb
。请参阅doc。使用 dtype='bool'
或 dtype=np.bool_
而不是 dtype=np.bool
(已弃用)
.corr
的结果没有错误。动作值是不变的(无差异),这会正确地产生nan
DataFrame correlation produces NaN although its values are all integers 的列。正如@JohanC 已经说过的那样,只需绘制没有操作列的热图。 plot_correlation_heatmap(df.iloc[:, 1:])
是最简单的方法,否则在函数中添加corr = corr.dropna(how='all', axis=1)
和corr = corr.dropna(how='all', axis=0)
。
@TrentonMcKinney 是的,你是对的。没有错误,在 pandas 和 seaborn 中都没有,尽管结果可能看起来很奇怪。
【参考方案1】:
Seaborn 不显示完全为NaN
的行和列;这些只是空的。这可能看起来很奇怪,但这是一个完全合乎逻辑的行为。
相关矩阵将一个常量值dataframe列对应的行列设置为NaN
。
如@TrentonMcKinney 建议的那样,解决方法可能是删除NaN 列和行,例如corr = corr.dropna(how='all', axis=1).dropna(how='all', axis=0)
。或者删除方差为零的数据框列 (corr = df.loc[:, df.var().ne(0)].corr()
)。
另一个解决方法是将 NaN 值涂成灰色:
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
import seaborn as sns
import pandas as pd
import numpy as np
def plot_correlation_heatmap(df):
corr = df.corr()
sns.set(style='white')
mask = np.zeros_like(corr, dtype=bool)
mask[np.triu_indices_from(mask)] = True
f, ax = plt.subplots(figsize=(11, 9))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(corr, mask=mask, cmap=cmap, vmax=0.3, center=0,
square=True, linewidths=.5, cbar_kws="shrink": .5, annot=True, ax=ax)
sns.heatmap(corr.fillna(0), mask=mask | ~ (np.isnan(corr)), cmap=ListedColormap(['lightgrey']),
square=True, linewidths=.5, cbar=False, annot=False, ax=ax)
ax.tick_params(axis='y', rotation=0)
plt.show()
plt.rcdefaults()
all_gen_cols = pd.DataFrame(np.random.randint(0, 2, size=(200, 10)), columns=[*'ABCDEFGHIJ'])
all_gen_cols['A'] = 1
plot_correlation_heatmap(all_gen_cols)
【讨论】:
也许这是最好的选项df.loc[:, ~df.var().eq(0)]
,它会删除所有方差为 0 的列,从而产生NaN
列和行。随意将我的 cmets 中的任何代码合并到答案中。【参考方案2】:
该行为与pandas
或seaborn
无关。直接来源于皮尔逊相关系数公式(rho
),DataFrame.corr
默认使用。
自从action = [1,1,...,1] => var(action) = 0
。因此,rho(action, Y)
(其中 Y
是任何其他列)的分母为零 =>
rho(action, Y)
未定义 (NaN)。
根据其他用户的建议,您应该在计算相关矩阵之前删除“操作”列,因为它不会添加信息。
【讨论】:
以上是关于seaborn 热图显示轴标签,但当 df.corr 为 NaN 时没有值的主要内容,如果未能解决你的问题,请参考以下文章
使用 Seaborn 和 Matplotlib 在热图和线图的共享子图中对齐 x 轴刻度