pandas 中的前瞻性滚动窗口 - 参差不齐的索引
Posted
技术标签:
【中文标题】pandas 中的前瞻性滚动窗口 - 参差不齐的索引【英文标题】:forward looking rolling window in pandas - ragged index 【发布时间】:2018-10-15 04:42:17 【问题描述】:希望有人可以在这里帮助我 我正在尝试在参差不齐的时间索引上创建一个前向滚动窗口。 Pandas 抱怨单调性——这在我的索引中显然得到了尊重。 正常的后向窗口工作正常。
[编辑] 反向时间索引不通过 is_monotonic。所以我猜它需要一个单调 rising 索引,而不仅仅是单调索引。
请大家有更好的选择 非常感谢!
In [352] tmp[::-1]
Out[352]:
stamp
2018-04-23 06:45:16.920 -0.11
2018-04-23 06:45:16.919 -0.03
2018-04-23 06:45:16.918 -0.01
2018-04-23 06:45:16.917 -0.02
2018-04-23 06:45:16.916 0.03
2018-04-23 06:45:16.914 0.03
2018-04-23 06:45:16.911 0.03
2018-04-23 06:45:16.910 0.06
2018-04-23 06:45:16.909 0.09
2018-04-23 06:45:16.908 0.08
2018-04-23 06:45:16.907 0.18
2018-04-23 06:45:16.906 0.28
2018-04-23 06:45:16.905 0.28
2018-04-23 06:45:16.904 0.02
2018-04-23 06:45:16.903 0.09
2018-04-23 06:45:16.902 0.09
2018-04-23 06:45:16.901 0.09
2018-04-23 06:45:16.900 0.09
2018-04-23 06:45:16.899 -0.24
2018-04-23 06:45:16.898 -0.22
2018-04-23 06:45:16.894 -0.22
2018-04-23 06:45:16.799 -0.21
2018-04-23 06:45:16.798 -0.19
2018-04-23 06:45:16.797 -0.21
2018-04-23 06:45:15.057 -0.13
2018-04-23 06:45:15.056 -0.16
2018-04-23 06:45:13.382 -0.04
2018-04-23 06:45:13.381 -0.02
2018-04-23 06:45:13.380 -0.05
2018-04-23 06:45:13.379 -0.08
Name: d66, dtype: float64
In [353]: tmp[::-1].rolling('20L')
Traceback (most recent call last):
File "<ipython-input-355-74bdfcdfbbd1>", line 1, in <module>
tmp[::-1].rolling('20L')
File "C:\Users\luigi\Anaconda3\lib\site-packages\pandas\core\generic.py", line 7067, in rolling
on=on, axis=axis, closed=closed)
File "C:\Users\luigi\Anaconda3\lib\site-packages\pandas\core\window.py", line 2069, in rolling
return Rolling(obj, **kwds)
File "C:\Users\luigi\Anaconda3\lib\site-packages\pandas\core\window.py", line 86, in __init__
self.validate()
File "C:\Users\luigi\Anaconda3\lib\site-packages\pandas\core\window.py", line 1104, in validate
self._validate_monotonic()
File "C:\Users\luigi\Anaconda3\lib\site-packages\pandas\core\window.py", line 1136, in _validate_monotonic
"monotonic".format(formatted))
ValueError: index must be monotonic
In [356]: tmp.index.is_monotonic
Out[356]: True
In [357]: tmp[::-1].index.is_monotonic
Out[357]: False
In [358]: tmp[::-1].index.is_monotonic_decreasing
Out[358]: True
【问题讨论】:
看一下github上的this issue,好像还不支持单调指数递减 【参考方案1】:以防万一您仍在寻找解决方案。在 reindex() 和额外列的帮助下,前视窗口参差不齐的滚动函数应该是可行的。
import pandas as pd
from io import StringIO
str = """dtime value
2018-04-23 06:45:16.920 -0.11
2018-04-23 06:45:16.919 -0.03
2018-04-23 06:45:16.918 -0.01
2018-04-23 06:45:16.917 -0.02
2018-04-23 06:45:16.916 0.03
2018-04-23 06:45:16.914 0.03
2018-04-23 06:45:16.911 0.03
2018-04-23 06:45:16.910 0.06
2018-04-23 06:45:16.909 0.09
2018-04-23 06:45:16.908 0.08
2018-04-23 06:45:16.907 0.18
2018-04-23 06:45:16.906 0.28
2018-04-23 06:45:16.905 0.28
2018-04-23 06:45:16.904 0.02
2018-04-23 06:45:16.903 0.09
2018-04-23 06:45:16.902 0.09
2018-04-23 06:45:16.901 0.09
2018-04-23 06:45:16.900 0.09
2018-04-23 06:45:16.899 -0.24
2018-04-23 06:45:16.898 -0.22
2018-04-23 06:45:16.894 -0.22
2018-04-23 06:45:16.799 -0.21
2018-04-23 06:45:16.798 -0.19
2018-04-23 06:45:16.797 -0.21
2018-04-23 06:45:15.057 -0.13
2018-04-23 06:45:15.056 -0.16
2018-04-23 06:45:13.382 -0.04
2018-04-23 06:45:13.381 -0.02
2018-04-23 06:45:13.380 -0.05
2018-04-23 06:45:13.379 -0.08
"""
## read the data tmp[::-1]
df = pd.read_table(StringIO(str), sep="\s\s+", engine="python", index_col=["dtime"], parse_dates=['dtime'])
## reverse the data to its original order
df = df[::-1]
## setup the offset, i.e. 10ms
offset = '10ms'
# create a new column with values as index datetime plus the window timedelta 10ms
df['dt_new'] = df.index + pd.Timedelta(offset)
# use df.index and this new column to form the new index(remove duplicates and sort the list)
idx = sorted(set([*df.index.tolist(), *df.dt_new.tolist()]))
# reindex the original dataframe and calculate the backward rolling sum
df1 = df.reindex(idx).fillna(value='value':0).value.rolling(offset, closed='left').sum().to_frame()
# make a LEFt join to the original dataframe. `value_y` should be the forward rolling sum
df.merge(df1, left_on='dt_new', right_index=True, how='left')
# value_x dt_new value_y
#dtime
#2018-04-23 06:45:13.379 -0.08 2018-04-23 06:45:13.389 -0.19
#2018-04-23 06:45:13.380 -0.05 2018-04-23 06:45:13.390 -0.11
#2018-04-23 06:45:13.381 -0.02 2018-04-23 06:45:13.391 -0.06
#2018-04-23 06:45:13.382 -0.04 2018-04-23 06:45:13.392 -0.04
#2018-04-23 06:45:15.056 -0.16 2018-04-23 06:45:15.066 -0.29
#2018-04-23 06:45:15.057 -0.13 2018-04-23 06:45:15.067 -0.13
#2018-04-23 06:45:16.797 -0.21 2018-04-23 06:45:16.807 -0.61
#2018-04-23 06:45:16.798 -0.19 2018-04-23 06:45:16.808 -0.40
#2018-04-23 06:45:16.799 -0.21 2018-04-23 06:45:16.809 -0.21
#2018-04-23 06:45:16.894 -0.22 2018-04-23 06:45:16.904 -0.32
#2018-04-23 06:45:16.898 -0.22 2018-04-23 06:45:16.908 0.66
#2018-04-23 06:45:16.899 -0.24 2018-04-23 06:45:16.909 0.96
#2018-04-23 06:45:16.900 0.09 2018-04-23 06:45:16.910 1.29
#2018-04-23 06:45:16.901 0.09 2018-04-23 06:45:16.911 1.26
#2018-04-23 06:45:16.902 0.09 2018-04-23 06:45:16.912 1.20
#2018-04-23 06:45:16.903 0.09 2018-04-23 06:45:16.913 1.11
#2018-04-23 06:45:16.904 0.02 2018-04-23 06:45:16.914 1.02
#2018-04-23 06:45:16.905 0.28 2018-04-23 06:45:16.915 1.03
#2018-04-23 06:45:16.906 0.28 2018-04-23 06:45:16.916 0.75
#2018-04-23 06:45:16.907 0.18 2018-04-23 06:45:16.917 0.50
#2018-04-23 06:45:16.908 0.08 2018-04-23 06:45:16.918 0.30
#2018-04-23 06:45:16.909 0.09 2018-04-23 06:45:16.919 0.21
#2018-04-23 06:45:16.910 0.06 2018-04-23 06:45:16.920 0.09
#2018-04-23 06:45:16.911 0.03 2018-04-23 06:45:16.921 -0.08
#2018-04-23 06:45:16.914 0.03 2018-04-23 06:45:16.924 -0.11
#2018-04-23 06:45:16.916 0.03 2018-04-23 06:45:16.926 -0.14
#2018-04-23 06:45:16.917 -0.02 2018-04-23 06:45:16.927 -0.17
#2018-04-23 06:45:16.918 -0.01 2018-04-23 06:45:16.928 -0.15
#2018-04-23 06:45:16.919 -0.03 2018-04-23 06:45:16.929 -0.14
#2018-04-23 06:45:16.920 -0.11 2018-04-23 06:45:16.930 -0.11
一些注意事项:
当滚动窗口的大小为offset
时,结果可能会因您定义和选择closed
选项的方式而异。默认情况下,closed
设置为 right
。如果移动“偏移”是应用的方法(如本例所示),则滚动聚合必须使用closed
= left
计算。 (虽然你可能有不同的设计)。当窗口大小为固定数字时,默认closed
为'both'。
索引(dtime
字段)不应包含重复项,否则,应根据两个字段(dtime、值)对 idx
进行重复数据删除。
潜在问题:
-
在最坏的情况下,reindex() 可能会使行数翻倍。
使用日期时间字段加入数据帧,如果日期时间保存为浮点数,这可能不适用于每个系统。
【讨论】:
很好的答案 jxc!以上是关于pandas 中的前瞻性滚动窗口 - 参差不齐的索引的主要内容,如果未能解决你的问题,请参考以下文章
如何从 Pandas 中的 DatetimeIndex 获取滚动窗口内的持续时间