Pandas Python - 计数和分组日期时间索引
Posted
技术标签:
【中文标题】Pandas Python - 计数和分组日期时间索引【英文标题】:Pandas Python - Counting and Grouping Date-Time-Index 【发布时间】:2021-02-18 20:08:15 【问题描述】:我正在将一个非常大的 excel 文件读入数据框
Date Lane Lane Name Direction DirectionName Speed (mph) Headway (s) Gap (s) Flags Flag Text
0 2018-02-02 00:00:03.000 6 SB_NS 2 South 38.525 NaN NaN 5 Friday
1 2018-02-02 00:00:22.010 5 SB_MID 2 South 32.310 NaN NaN 5 Friday
2 2018-02-02 00:00:22.020 4 SB_OS 2 South 44.739 NaN NaN 5 Friday
3 2018-02-02 00:00:36.040 6 SB_NS 2 South 33.554 NaN NaN 5 Friday
4 2018-02-02 00:00:49.070 6 SB_NS 2 South 39.768 12.300 11.847 5 Friday
... ... ... ... ... ... ... ... ... ... ...
503763 2018-02-27 23:59:00.090 2 NB_MID 1 North 32.932 4.415 3.833 2 Tuesday
503764 2018-02-27 23:59:29.090 6 SB_NS 2 South 29.825 65.500 64.700 2 Tuesday
503765 2018-02-27 23:59:32.050 4 SB_OS 2 South 29.205 236.000 235.848 2 Tuesday
503766 2018-02-27 23:59:33.070 6 SB_NS 2 South 37.283 3.330 3.462 2 Tuesday
503767 2018-02-27 23:59:58.050 1 NB_NS 1 North 36.661 76.000 75.669 2 Tuesday
503768 rows × 10 columns
我删除了不需要的列。我只对 [DirectionName = South] 的某些日期和数据感兴趣。我还留下了“标志文本”,其中只是星期几。我还设置了 DateTime 格式并使其成为索引。
下面的代码是我用来指定要使用的日期的代码:
#df.sort_index(inplace=True)
df = df.loc[(df.DirectionName =="South")]
# Specify dates to use
myDates = ['2018-02-02', '2018-02-09', '2018-02-16', '2018-02-23']
df_in = df[pd.to_datetime(df.index.date).isin(myDates)]
df
这给了我这个输出:
DirectionName FlagText
Date
2018-02-02 00:00:03.000 South Friday
2018-02-02 00:00:22.010 South Friday
2018-02-02 00:00:22.020 South Friday
2018-02-02 00:00:36.040 South Friday
2018-02-02 00:00:49.070 South Friday
... ... ...
2018-02-27 23:58:20.070 South Tuesday
2018-02-27 23:58:23.040 South Tuesday
2018-02-27 23:59:29.090 South Tuesday
2018-02-27 23:59:32.050 South Tuesday
2018-02-27 23:59:33.070 South Tuesday
251528 rows × 2 columns
我希望能够计算所选日期的总行数。例如,我想计算日期 02-02-2018 的每一行。最终,我希望能够计算一天中每个小时的总数(0am > 23:59pm。)
这是我想要的输出示例:
DirectionName Flag Text Count
Date
2018-02-02 01:00:00.000 South Friday 234
2018-02-02 02:00:00.000 South Friday 554
2018-02-02 03:00:00.000 South Friday 785
2018-02-02 04:00:00.000 South Friday 124
2018-02-02 05:00:00.000 South Friday 345
... ... ...
我怎样才能像上面显示的那样对每小时的日期进行分组?
我如何才能计算该小时范围内的日期?
我可以将这种方法用于多个日期吗? (四个不同的日期)
我曾尝试查看其他帖子/文档,但因为我已将日期放入索引而感到困惑?我认为这更有意义。
非常感谢您的帮助和澄清
【问题讨论】:
【参考方案1】:使用 groupby 按日期分组,然后使用 count。
# if your date column is in date plus time then convert it to date then group by date then count of Date column
df.groupby([df['Date'].dt.date])['Date'].count()
如果您的日期已经是日期格式,您可以这样做
df.groupby('Date')['Date'].count()
【讨论】:
【参考方案2】:您可以创建另一列,其中 (a) 日期 (b) 日期直到小时
类似这样的:
df['day-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
df['hour-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d %H')
然后对这些列中的每一列进行分组:
day_sum_df = df.groupby(['day-date']).sum()
hour_sum_df = df.groupby(['hour-date']).sum()
【讨论】:
以上是关于Pandas Python - 计数和分组日期时间索引的主要内容,如果未能解决你的问题,请参考以下文章