Pandas Python - 计数和分组日期时间索引

Posted

技术标签:

【中文标题】Pandas Python - 计数和分组日期时间索引【英文标题】:Pandas Python - Counting and Grouping Date-Time-Index 【发布时间】:2021-02-18 20:08:15 【问题描述】:

我正在将一个非常大的 excel 文件读入数据框

Date    Lane    Lane Name   Direction   DirectionName   Speed (mph) Headway (s) Gap (s) Flags   Flag Text
0   2018-02-02 00:00:03.000 6   SB_NS   2   South   38.525  NaN NaN 5   Friday
1   2018-02-02 00:00:22.010 5   SB_MID  2   South   32.310  NaN NaN 5   Friday
2   2018-02-02 00:00:22.020 4   SB_OS   2   South   44.739  NaN NaN 5   Friday
3   2018-02-02 00:00:36.040 6   SB_NS   2   South   33.554  NaN NaN 5   Friday
4   2018-02-02 00:00:49.070 6   SB_NS   2   South   39.768  12.300  11.847  5   Friday
... ... ... ... ... ... ... ... ... ... ...
503763  2018-02-27 23:59:00.090 2   NB_MID  1   North   32.932  4.415   3.833   2   Tuesday
503764  2018-02-27 23:59:29.090 6   SB_NS   2   South   29.825  65.500  64.700  2   Tuesday
503765  2018-02-27 23:59:32.050 4   SB_OS   2   South   29.205  236.000 235.848 2   Tuesday
503766  2018-02-27 23:59:33.070 6   SB_NS   2   South   37.283  3.330   3.462   2   Tuesday
503767  2018-02-27 23:59:58.050 1   NB_NS   1   North   36.661  76.000  75.669  2   Tuesday
503768 rows × 10 columns

我删除了不需要的列。我只对 [DirectionName = South] 的某些日期和数据感兴趣。我还留下了“标志文本”,其中只是星期几。我还设置了 DateTime 格式并使其成为索引。

下面的代码是我用来指定要使用的日期的代码:

#df.sort_index(inplace=True)
df = df.loc[(df.DirectionName =="South")] 

# Specify dates to use
myDates = ['2018-02-02', '2018-02-09', '2018-02-16', '2018-02-23']
df_in = df[pd.to_datetime(df.index.date).isin(myDates)]
df

这给了我这个输出:

                DirectionName   FlagText   
Date        
2018-02-02 00:00:03.000 South   Friday
2018-02-02 00:00:22.010 South   Friday
2018-02-02 00:00:22.020 South   Friday
2018-02-02 00:00:36.040 South   Friday
2018-02-02 00:00:49.070 South   Friday
... ... ...
2018-02-27 23:58:20.070 South   Tuesday
2018-02-27 23:58:23.040 South   Tuesday
2018-02-27 23:59:29.090 South   Tuesday
2018-02-27 23:59:32.050 South   Tuesday
2018-02-27 23:59:33.070 South   Tuesday
251528 rows × 2 columns

我希望能够计算所选日期的总行数。例如,我想计算日期 02-02-2018 的每一行。最终,我希望能够计算一天中每个小时的总数(0am > 23:59pm。)

这是我想要的输出示例:

 DirectionName   Flag Text              Count
Date        
2018-02-02 01:00:00.000 South   Friday   234
2018-02-02 02:00:00.000 South   Friday   554
2018-02-02 03:00:00.000 South   Friday   785
2018-02-02 04:00:00.000 South   Friday   124
2018-02-02 05:00:00.000 South   Friday   345
... ... ...
我怎样才能像上面显示的那样对每小时的日期进行分组? 我如何才能计算该小时范围内的日期? 我可以将这种方法用于多个日期吗? (四个不同的日期)

我曾尝试查看其他帖子/文档,但因为我已将日期放入索引而感到困惑?我认为这更有意义。

非常感谢您的帮助和澄清

【问题讨论】:

【参考方案1】:

使用 groupby 按日期分组,然后使用 count。

# if your date column is in date plus time then convert it to date then group by date then count of Date column
df.groupby([df['Date'].dt.date])['Date'].count()

如果您的日期已经是日期格式,您可以这样做

df.groupby('Date')['Date'].count()

【讨论】:

【参考方案2】:

您可以创建另一列,其中 (a) 日期 (b) 日期直到小时

类似这样的:

df['day-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d')
df['hour-date'] = pd.to_datetime(df.Date, format='%Y-%m-%d %H')

然后对这些列中的每一列进行分组:

day_sum_df = df.groupby(['day-date']).sum()
hour_sum_df = df.groupby(['hour-date']).sum()

【讨论】:

以上是关于Pandas Python - 计数和分组日期时间索引的主要内容,如果未能解决你的问题,请参考以下文章

在熊猫数据框中按日期和计数值分组

在 Pandas 中分组和计数

在 pandas / python 中对条件值进行分组和计数

Pandas 的日期时间组

每月、每年分组的值计数 - Pandas

Python Pandas:将日期时间列分组为小时和分钟聚合