计算pandas中多列问题的likert量表结果数
Posted
技术标签:
【中文标题】计算pandas中多列问题的likert量表结果数【英文标题】:Count the number of likert scale results from multiple column questions in pandas 【发布时间】:2017-11-08 02:22:59 【问题描述】:我有以下数据框:
Question1 Question2 Question3 Question4
User1 Agree Agree Disagree Strongly Disagree
User2 Disagree Agree Agree Disagree
User3 Agree Agree Agree Agree
有没有办法将上面列出的数据框转换为下面的?
Agree Disagree Strongly Disagree
Question1 2 1 0
Question2 2 1 0
Question3 2 1 0
Question4 1 1 1
这和我之前的问题类似:Make a dataframe with grouped questions from three columns
我尝试使用 stack/pivot 查看以前的问题,但无法弄清楚。实际的数据框有 20 多个问题和一个李克特量表,从非常同意、同意、中立、不同意、非常不同意。
【问题讨论】:
【参考方案1】:您可以使用pd.Series.value_counts
遍历列。如果您使用 apply 执行此操作,索引将自动对齐:
df.apply(pd.Series.value_counts)
Out:
Question1 Question2 Question3 Question4
Agree 2.0 3.0 2.0 1
Disagree 1.0 NaN 1.0 1
Strongly Disagree NaN NaN NaN 1
一点后处理:
df.apply(pd.Series.value_counts).fillna(0).astype('int')
Out:
Question1 Question2 Question3 Question4
Agree 2 3 2 1
Disagree 1 0 1 1
Strongly Disagree 0 0 0 1
【讨论】:
【参考方案2】:df.apply(lambda x:x.value_counts()).fillna(0).astype(int)
# Question1 Question2 Question3 Question4
#Agree 2 3 2 1
#Disagree 1 0 1 1
#Strongly Disagree 0 0 0 1
【讨论】:
【参考方案3】:与pd.get_dummies
pd.get_dummies(df.stack()).groupby(level=1).sum()
Agree Disagree Strongly Disagree
Question1 2 1 0
Question2 3 0 0
Question3 2 1 0
Question4 1 1 1
将其提升到另一个层次我们可以使用 numpy.bincount
来加快速度。但是我们要注意尺寸
v = df.values
f, u = pd.factorize(v.ravel())
n, m = u.size, v.shape[1]
r = np.tile(np.arange(m), n)
b0 = np.bincount(r * n + f)
pad = np.zeros(n * m - b0.size, dtype=int)
b = np.append(b0, pad)
pd.DataFrame(b.reshape(m, n), df.columns, u)
Agree Disagree Strongly Disagree
Question1 2 1 0
Question2 3 0 0
Question3 2 1 0
Question4 1 1 1
另一个numpy
选项
v = df.values
n, m = v.shape
f, u = pd.factorize(v.ravel())
pd.DataFrame(
np.eye(u.size, dtype=int)[f].reshape(n, m, -1).sum(0),
df.columns, u
)
Agree Disagree Strongly Disagree
Question1 2 1 0
Question2 3 0 0
Question3 2 1 0
Question4 1 1 1
速度差异
%%timeit
v = df.values
f, u = pd.factorize(v.ravel())
n, m = u.size, v.shape[1]
r = np.tile(np.arange(m), n)
b0 = np.bincount(r * n + f)
pad = np.zeros(n * m - b0.size, dtype=int)
b = np.append(b0, pad)
pd.DataFrame(b.reshape(m, n), df.columns, u)
1000 loops, best of 3: 194 µs per loop
%%timeit
v = df.values
n, m = v.shape
f, u = pd.factorize(v.ravel())
pd.DataFrame(
np.eye(u.size, dtype=int)[f].reshape(n, m, -1).sum(0),
df.columns, u
)
1000 loops, best of 3: 195 µs per loop
%timeit pd.get_dummies(df.stack()).groupby(level=1).sum()
1000 loops, best of 3: 1.2 ms per loop
【讨论】:
谢谢!这非常有效,我上一个问题中的“额外积分”部分帮助我对列进行了排序。以上是关于计算pandas中多列问题的likert量表结果数的主要内容,如果未能解决你的问题,请参考以下文章
如何在Likert量表上测量的自变量应该在二元逻辑回归中作为连续变量或序数变量来处理?
如何在 pct_change 计算中对 pandas DataFrame 中的多列进行分组