将经过训练的 HDF5 模型加载到 Rust 中以进行预测

Posted

技术标签:

【中文标题】将经过训练的 HDF5 模型加载到 Rust 中以进行预测【英文标题】:Loading a trained HDF5 model into Rust to make predictions 【发布时间】:2021-09-12 21:46:03 【问题描述】:

我使用 MNIST 数据集训练了一个模型来识别数字。该模型已使用 TensorFlow 和 Keras 在 Python 中进行了训练,并将输出保存到我​​命名为“sample_mnist.h5”的 HDF5 文件中。

我想将经过训练的模型从 HDF5 文件加载到 Rust 中以进行预测。

在 Python 中,我可以从 HDF5 生成模型并使用代码进行预测:

model = keras.models.load_model("./sample_mnist.h5")
model.precict(test_input)  # assumes test_input is the correct input type for the model

这个 Python sn-p 的 Rust 等价物是什么?

【问题讨论】:

【参考方案1】:

首先,您需要将模型保存为 .pb 格式,而不是 .hdf5,以便将其移植到 Rust,因为这种格式保存 一切关于在 Python 之外重建模型所需的执行图。 TensorFlow Rust repo 上有一个来自用户justnoxx 的开放pull request,它展示了如何为一个简单的模型执行此操作。要点是在 Python 中给出了一些模型......

from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense

classifier = Sequential()
classifier.add(Dense(5, activation='relu', name="test_in", input_dim=5)) # Named input
classifier.add(Dense(5, activation='relu'))
classifier.add(Dense(1, activation='sigmoid', name="test_out")) # Named output

classifier.compile(optimizer ='adam', loss='binary_crossentropy', metrics=['accuracy'])

classifier.fit([[0.1, 0.2, 0.3, 0.4, 0.5]], [[1]], batch_size=1, epochs=1);

classifier.save('examples/keras_single_input_saved_model', save_format='tf')

以及我们命名的输入“test_in”和输出“test_out”以及它们的预期大小,我们可以在 Rust 中应用保存的模型...

use tensorflow::Graph, SavedModelBundle, SessionOptions, SessionRunArgs, Tensor;

fn main() 

    // In this file test_in_input is being used while in the python script,
    // that generates the saved model from Keras model it has a name "test_in".
    // For multiple inputs _input is not being appended to signature input parameter name.
    let signature_input_parameter_name = "test_in_input";
    let signature_output_parameter_name = "test_out";

    // Initialize save_dir, input tensor, and an empty graph
    let save_dir =
        "examples/keras_single_input_saved_model";
    let tensor: Tensor<f32> = Tensor::new(&[1, 5])
        .with_values(&[0.1, 0.2, 0.3, 0.4, 0.5])
        .expect("Can't create tensor");
    let mut graph = Graph::new();

    // Load saved model bundle (session state + meta_graph data)
    let bundle = 
        SavedModelBundle::load(&SessionOptions::new(), &["serve"], &mut graph, save_dir)
        .expect("Can't load saved model");

    // Get the session from the loaded model bundle
    let session = &bundle.session;

    // Get signature metadata from the model bundle
    let signature = bundle
        .meta_graph_def()
        .get_signature("serving_default")
        .unwrap();

    // Get input/output info
    let input_info = signature.get_input(signature_input_parameter_name).unwrap();
    let output_info = signature
        .get_output(signature_output_parameter_name)
        .unwrap();

    // Get input/output ops from graph
    let input_op = graph
        .operation_by_name_required(&input_info.name().name)
        .unwrap();
    let output_op = graph
        .operation_by_name_required(&output_info.name().name)
        .unwrap();
    
    // Manages inputs and outputs for the execution of the graph
    let mut args = SessionRunArgs::new();
    args.add_feed(&input_op, 0, &tensor); // Add any inputs

    let out = args.request_fetch(&output_op, 0); // Request outputs

    // Run model
    session.run(&mut args) // Pass to session to run
        .expect("Error occurred during calculations");

    // Fetch outputs after graph execution
    let out_res: f32 = args.fetch(out).unwrap()[0];

    println!("Results: :?", out_res);

【讨论】:

这能回答你的问题吗?

以上是关于将经过训练的 HDF5 模型加载到 Rust 中以进行预测的主要内容,如果未能解决你的问题,请参考以下文章

如何将经过 gpu 训练的模型加载到 cpu 中?

在 android studio 中使用 chaquopy 加载模型 hdf5

将本地训练的 TensorFlow 模型导入 Google Colab

将 Keras 模型 HDF5 文件存储到 SQL 数据库

高效地为具有内存限制的神经网络训练创建 HDF5 图像数据集

使用 Caffe 训练数据集时多次加载 HDF5 文件