如何根据列值从 DataFrame 中选择行?
Posted
技术标签:
【中文标题】如何根据列值从 DataFrame 中选择行?【英文标题】:How do I select rows from a DataFrame based on column values? 【发布时间】:2013-06-08 22:35:50 【问题描述】:如何根据 Pandas 中某列中的值从 DataFrame
中选择行?
在 SQL 中,我会使用:
SELECT *
FROM table
WHERE column_name = some_value
我试图查看 Pandas 的文档,但没有立即找到答案。
【问题讨论】:
查看这里:github.com/debaonline4u/Python_Programming/tree/master/… 这是与 SQL 的比较:pandas.pydata.org/pandas-docs/stable/comparison_with_sql.html 您可以将 pandas 作为 SQL 运行。 您也可以使用 DFsql,在 pandas 数据帧上运行内存 SQL medium.com/riselab/… github.com/mindsdb/dfsql 被引导到这里根据列表多列值寻找匹配。这篇文章只是关于一列中的值。建议编辑标题以阅读“列中的值”以避免错误的搜索结果。 【参考方案1】:要选择列值等于标量 some_value
的行,请使用 ==
:
df.loc[df['column_name'] == some_value]
要选择列值在可迭代 some_values
中的行,请使用 isin
:
df.loc[df['column_name'].isin(some_values)]
将多个条件与&
结合起来:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
注意括号。由于 Python 的 operator precedence rules,&
比 <=
和 >=
绑定得更紧密。因此,最后一个示例中的括号是必要的。没有括号
df['column_name'] >= A & df['column_name'] <= B
被解析为
df['column_name'] >= (A & df['column_name']) <= B
导致Truth value of a Series is ambiguous error。
要选择列值不等于 some_value
的行,请使用!=
:
df.loc[df['column_name'] != some_value]
isin
返回一个布尔系列,因此要选择 some_values
中值为 not 的行,请使用 ~
否定布尔系列:
df.loc[~df['column_name'].isin(some_values)]
例如,
import pandas as pd
import numpy as np
df = pd.DataFrame('A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2)
print(df)
# A B C D
# 0 foo one 0 0
# 1 bar one 1 2
# 2 foo two 2 4
# 3 bar three 3 6
# 4 foo two 4 8
# 5 bar two 5 10
# 6 foo one 6 12
# 7 foo three 7 14
print(df.loc[df['A'] == 'foo'])
产量
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
如果您要包含多个值,请将它们放在一个
列出(或更一般地说,任何可迭代的)并使用isin
:
print(df.loc[df['B'].isin(['one','three'])])
产量
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
但请注意,如果您希望多次执行此操作,则更有效的是
先做一个索引,然后用df.loc
:
df = df.set_index(['B'])
print(df.loc['one'])
产量
A C D
B
one foo 0 0
one bar 1 2
one foo 6 12
或者,要包含索引中的多个值,请使用df.index.isin
:
df.loc[df.index.isin(['one','two'])]
产量
A C D
B
one foo 0 0
one bar 1 2
two foo 2 4
two foo 4 8
two bar 5 10
one foo 6 12
【讨论】:
其实 df[df['colume_name']==some_value] 也可以。但是我的第一次尝试 df.where(df['colume_name']==some_value) 不起作用...不知道为什么... 当您使用df.where(condition)
时,条件必须与df
具有相同的形状。
这些链接可能对你们中的许多人非常有用:pandas.pydata.org/pandas-docs/stable/indexing.htmlgregreda.com/2013/10/26/working-with-pandas-dataframes
仅供参考:如果您想根据两个(或多个)标签(需要两者或其中一个)选择一行,请参阅***.com/questions/31756340/…
既然df[df['column_name'] == some_value]
有效,为什么我们需要在这里添加.loc
?【参考方案2】:
有几种方法可以从 Pandas 数据框中选择行:
-
布尔索引 (
df[df['col'] == value
])
位置索引 (df.iloc[...]
)
标签索引 (df.xs(...)
)
df.query(...)
API
下面我将向您展示每种方法的示例,以及何时使用某些技术的建议。假设我们的标准是列'A'
== 'foo'
(关于性能的注意事项:对于每种基本类型,我们可以使用 Pandas API 使事情变得简单,或者我们可以在 API 之外冒险,通常进入 NumPy,然后加快速度。)
设置
首先我们需要确定一个条件,作为我们选择行的标准。我们将从 OP 的案例 column_name == some_value
开始,并包括一些其他常见的用例。
借用@unutbu:
import pandas as pd, numpy as np
df = pd.DataFrame('A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split(),
'C': np.arange(8), 'D': np.arange(8) * 2)
1。布尔索引
...布尔索引需要找到每行的'A'
列的真值等于'foo'
,然后使用这些真值来确定要保留哪些行。通常,我们将这个系列命名为一组真值,mask
。我们也会在这里这样做。
mask = df['A'] == 'foo'
然后我们可以使用这个掩码对数据框进行切片或索引
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
这是完成此任务的最简单方法之一,如果性能或直观性不是问题,这应该是您选择的方法。但是,如果性能是一个问题,那么您可能需要考虑另一种创建mask
的方法。
2。位置索引
位置索引 (df.iloc[...]
) 有其用例,但这不是其中之一。为了确定切片的位置,我们首先需要执行与上面相同的布尔分析。这让我们执行了一个额外的步骤来完成相同的任务。
mask = df['A'] == 'foo'
pos = np.flatnonzero(mask)
df.iloc[pos]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
3。标签索引
标签索引可以非常方便,但在这种情况下,我们再次做更多的工作没有任何好处
df.set_index('A', append=True, drop=False).xs('foo', level=1)
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
4。 df.query()
API
pd.DataFrame.query
是执行此任务的一种非常优雅/直观的方式,但通常速度较慢。 但是,如果你注意下面的时序,对于大数据,查询是非常有效的。比标准方法更重要,并且与我的最佳建议相似。
df.query('A == "foo"')
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
我的偏好是使用Boolean
mask
可以通过修改我们创建 Boolean
mask
的方式来进行实际改进。
mask
备选1
使用底层 NumPy 数组并放弃创建另一个 pd.Series
的开销
mask = df['A'].values == 'foo'
我将在最后展示更完整的时间测试,但只需看看我们使用示例数据框获得的性能提升。首先我们看看创建mask
的区别
%timeit mask = df['A'].values == 'foo'
%timeit mask = df['A'] == 'foo'
5.84 µs ± 195 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
166 µs ± 4.45 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
使用 NumPy 数组评估 mask
大约快 30 倍。这部分是由于 NumPy 评估通常更快。部分原因还在于构建索引和相应的pd.Series
对象所需的开销不足。
接下来,我们将看看使用一个mask
与另一个进行切片的时间。
mask = df['A'].values == 'foo'
%timeit df[mask]
mask = df['A'] == 'foo'
%timeit df[mask]
219 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
239 µs ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
性能提升没有那么明显。我们将看看这是否能经受住更强大的测试。
mask
备选2
我们也可以重建数据框。重建数据框时有一个很大的警告——这样做时你必须注意dtypes
!
我们将这样做而不是df[mask]
pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
如果数据框是混合类型,例如我们的示例,那么当我们得到 df.values
时,结果数组是 dtype
object
,因此,新数据框的所有列都将是 @987654365 @object
。因此需要astype(df.dtypes)
并扼杀任何潜在的性能提升。
%timeit df[m]
%timeit pd.DataFrame(df.values[mask], df.index[mask], df.columns).astype(df.dtypes)
216 µs ± 10.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
1.43 ms ± 39.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
但是,如果数据框不是混合类型,这是一种非常有用的方法。
给定
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
d1
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
%%timeit
mask = d1['A'].values == 7
d1[mask]
179 µs ± 8.73 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
对比
%%timeit
mask = d1['A'].values == 7
pd.DataFrame(d1.values[mask], d1.index[mask], d1.columns)
87 µs ± 5.12 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
我们将时间缩短了一半。
mask
替代3
@unutbu 还向我们展示了如何使用pd.Series.isin
来说明df['A']
的每个元素在一组值中。如果我们的一组值是一组一个值,即'foo'
,则计算结果相同。但如果需要,它也可以概括为包括更大的值集。事实证明,这仍然相当快,即使它是一个更通用的解决方案。对于那些不熟悉这个概念的人来说,唯一真正的损失是直觉。
mask = df['A'].isin(['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
但是,和以前一样,我们可以利用 NumPy 来提高性能,同时几乎不牺牲任何东西。我们将使用np.in1d
mask = np.in1d(df['A'].values, ['foo'])
df[mask]
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时机
我将包含其他帖子中提到的其他概念以供参考。
下面的代码
此表中的每个 列 代表一个不同长度的数据帧,我们在该数据帧上测试每个函数。每列显示相对时间,最快的函数给定基本索引1.0
。
res.div(res.min())
10 30 100 300 1000 3000 10000 30000
mask_standard 2.156872 1.850663 2.034149 2.166312 2.164541 3.090372 2.981326 3.131151
mask_standard_loc 1.879035 1.782366 1.988823 2.338112 2.361391 3.036131 2.998112 2.990103
mask_with_values 1.010166 1.000000 1.005113 1.026363 1.028698 1.293741 1.007824 1.016919
mask_with_values_loc 1.196843 1.300228 1.000000 1.000000 1.038989 1.219233 1.037020 1.000000
query 4.997304 4.765554 5.934096 4.500559 2.997924 2.397013 1.680447 1.398190
xs_label 4.124597 4.272363 5.596152 4.295331 4.676591 5.710680 6.032809 8.950255
mask_with_isin 1.674055 1.679935 1.847972 1.724183 1.345111 1.405231 1.253554 1.264760
mask_with_in1d 1.000000 1.083807 1.220493 1.101929 1.000000 1.000000 1.000000 1.144175
您会注意到最快的时间似乎在mask_with_values
和mask_with_in1d
之间共享。
res.T.plot(loglog=True)
函数
def mask_standard(df):
mask = df['A'] == 'foo'
return df[mask]
def mask_standard_loc(df):
mask = df['A'] == 'foo'
return df.loc[mask]
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_values_loc(df):
mask = df['A'].values == 'foo'
return df.loc[mask]
def query(df):
return df.query('A == "foo"')
def xs_label(df):
return df.set_index('A', append=True, drop=False).xs('foo', level=-1)
def mask_with_isin(df):
mask = df['A'].isin(['foo'])
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
测试
res = pd.DataFrame(
index=[
'mask_standard', 'mask_standard_loc', 'mask_with_values', 'mask_with_values_loc',
'query', 'xs_label', 'mask_with_isin', 'mask_with_in1d'
],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
for j in res.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in res.index:a
stmt = '(d)'.format(i)
setp = 'from __main__ import d, '.format(i)
res.at[i, j] = timeit(stmt, setp, number=50)
特殊计时
查看整个数据框只有一个非对象dtype
的特殊情况。
下面的代码
spec.div(spec.min())
10 30 100 300 1000 3000 10000 30000
mask_with_values 1.009030 1.000000 1.194276 1.000000 1.236892 1.095343 1.000000 1.000000
mask_with_in1d 1.104638 1.094524 1.156930 1.072094 1.000000 1.000000 1.040043 1.027100
reconstruct 1.000000 1.142838 1.000000 1.355440 1.650270 2.222181 2.294913 3.406735
事实证明,重建几百行是不值得的。
spec.T.plot(loglog=True)
函数
np.random.seed([3,1415])
d1 = pd.DataFrame(np.random.randint(10, size=(10, 5)), columns=list('ABCDE'))
def mask_with_values(df):
mask = df['A'].values == 'foo'
return df[mask]
def mask_with_in1d(df):
mask = np.in1d(df['A'].values, ['foo'])
return df[mask]
def reconstruct(df):
v = df.values
mask = np.in1d(df['A'].values, ['foo'])
return pd.DataFrame(v[mask], df.index[mask], df.columns)
spec = pd.DataFrame(
index=['mask_with_values', 'mask_with_in1d', 'reconstruct'],
columns=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
dtype=float
)
测试
for j in spec.columns:
d = pd.concat([df] * j, ignore_index=True)
for i in spec.index:
stmt = '(d)'.format(i)
setp = 'from __main__ import d, '.format(i)
spec.at[i, j] = timeit(stmt, setp, number=50)
【讨论】:
【参考方案3】:tl;博士
熊猫相当于
select * from table where column_name = some_value
是
table[table.column_name == some_value]
多个条件:
table[(table.column_name == some_value) | (table.column_name2 == some_value2)]
或
table.query('column_name == some_value | column_name2 == some_value2')
代码示例
import pandas as pd
# Create data set
d = 'foo':[100, 111, 222],
'bar':[333, 444, 555]
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
# bar foo
# 0 333 100
# 1 444 111
# 2 555 222
# Output only the row(s) in df where foo is 222:
df[df.foo == 222]
# Shows:
# bar foo
# 2 555 222
在上面的代码中,df[df.foo == 222]
行根据列值给出行,在本例中为222
。
多个条件也是可以的:
df[(df.foo == 222) | (df.bar == 444)]
# bar foo
# 1 444 111
# 2 555 222
但那时我建议使用query 函数,因为它不那么冗长并且产生相同的结果:
df.query('foo == 222 | bar == 444')
【讨论】:
query
是这里唯一与方法链兼容的答案。这似乎是 dplyr 中 filter
的 pandas 模拟。
谢谢。我尝试了多种方法来获得记录。唯一可行的方法是使用查询功能。【参考方案4】:
我发现前面的答案的语法是多余的,很难记住。 Pandas 在 v0.13 中引入了query()
方法,我更喜欢它。对于你的问题,你可以df.query('col == val')
转载自http://pandas.pydata.org/pandas-docs/version/0.17.0/indexing.html#indexing-query
In [167]: n = 10
In [168]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
In [169]: df
Out[169]:
a b c
0 0.687704 0.582314 0.281645
1 0.250846 0.610021 0.420121
2 0.624328 0.401816 0.932146
3 0.011763 0.022921 0.244186
4 0.590198 0.325680 0.890392
5 0.598892 0.296424 0.007312
6 0.634625 0.803069 0.123872
7 0.924168 0.325076 0.303746
8 0.116822 0.364564 0.454607
9 0.986142 0.751953 0.561512
# pure python
In [170]: df[(df.a < df.b) & (df.b < df.c)]
Out[170]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
# query
In [171]: df.query('(a < b) & (b < c)')
Out[171]:
a b c
3 0.011763 0.022921 0.244186
8 0.116822 0.364564 0.454607
您还可以通过添加 @
来访问环境中的变量。
exclude = ('red', 'orange')
df.query('color not in @exclude')
【讨论】:
【参考方案5】:将.query
与pandas >= 0.25.0 一起使用具有更大的灵活性:
2019 年 8 月更新答案
由于pandas >= 0.25.0,我们可以使用query
方法来过滤带有pandas 方法的数据帧,甚至可以过滤带有空格的列名。通常,列名中的空格会出错,但现在我们可以使用反引号 (`) 来解决这个问题 - 请参阅 GitHub:
# Example dataframe
df = pd.DataFrame('Sender email':['ex@example.com', "reply@shop.com", "buy@shop.com"])
Sender email
0 ex@example.com
1 reply@shop.com
2 buy@shop.com
将.query
与方法str.endswith
一起使用:
df.query('`Sender email`.str.endswith("@shop.com")')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
我们还可以通过在查询中使用 @
作为前缀来使用局部变量:
domain = 'shop.com'
df.query('`Sender email`.str.endswith(@domain)')
输出
Sender email
1 reply@shop.com
2 buy@shop.com
【讨论】:
赞成,因为 .str 演员表不明显。【参考方案6】:对于 Pandas 中的给定值,仅从多列中选择特定列:
select col_name1, col_name2 from table where column_name = some_value.
选项loc
:
df.loc[df['column_name'] == some_value, [col_name1, col_name2]]
或query
:
df.query('column_name == some_value')[[col_name1, col_name2]]
【讨论】:
【参考方案7】:使用numpy.where 可以获得更快的结果。
例如,unubtu's setup -
In [76]: df.iloc[np.where(df.A.values=='foo')]
Out[76]:
A B C D
0 foo one 0 0
2 foo two 2 4
4 foo two 4 8
6 foo one 6 12
7 foo three 7 14
时间比较:
In [68]: %timeit df.iloc[np.where(df.A.values=='foo')] # fastest
1000 loops, best of 3: 380 µs per loop
In [69]: %timeit df.loc[df['A'] == 'foo']
1000 loops, best of 3: 745 µs per loop
In [71]: %timeit df.loc[df['A'].isin(['foo'])]
1000 loops, best of 3: 562 µs per loop
In [72]: %timeit df[df.A=='foo']
1000 loops, best of 3: 796 µs per loop
In [74]: %timeit df.query('(A=="foo")') # slowest
1000 loops, best of 3: 1.71 ms per loop
【讨论】:
【参考方案8】:这是一个简单的例子
from pandas import DataFrame
# Create data set
d = 'Revenue':[100,111,222],
'Cost':[333,444,555]
df = DataFrame(d)
# mask = Return True when the value in column "Revenue" is equal to 111
mask = df['Revenue'] == 111
print mask
# Result:
# 0 False
# 1 True
# 2 False
# Name: Revenue, dtype: bool
# Select * FROM df WHERE Revenue = 111
df[mask]
# Result:
# Cost Revenue
# 1 444 111
【讨论】:
【参考方案9】:附加到这个著名的问题(虽然有点太晚了):您也可以使用df.groupby('column_name').get_group('column_desired_value').reset_index()
来创建一个具有特定值的指定列的新数据框。例如
import pandas as pd
df = pd.DataFrame('A': 'foo bar foo bar foo bar foo foo'.split(),
'B': 'one one two three two two one three'.split())
print("Original dataframe:")
print(df)
b_is_two_dataframe = pd.DataFrame(df.groupby('B').get_group('two').reset_index()).drop('index', axis = 1)
#NOTE: the final drop is to remove the extra index column returned by groupby object
print('Sub dataframe where B is two:')
print(b_is_two_dataframe)
运行这个给出:
Original dataframe:
A B
0 foo one
1 bar one
2 foo two
3 bar three
4 foo two
5 bar two
6 foo one
7 foo three
Sub dataframe where B is two:
A B
0 foo two
1 foo two
2 bar two
【讨论】:
【参考方案10】:在较新版本的 Pandas 中,受文档 (Viewing data) 的启发:
df[df["colume_name"] == some_value] #Scalar, True/False..
df[df["colume_name"] == "some_value"] #String
通过将子句放在括号中组合多个条件 ()
,并将它们与 &
和 |
(和/或)组合。像这样:
df[(df["colume_name"] == "some_value1") & (pd[pd["colume_name"] == "some_value2"])]
其他过滤器
pandas.notna(df["colume_name"]) == True # Not NaN
df['colume_name'].str.contains("text") # Search for "text"
df['colume_name'].str.lower().str.contains("text") # Search for "text", after converting to lowercase
【讨论】:
谢谢。如果我想选择某列内容长度 >10 的行怎么办?例如,我想要: len(df["column_name"] > 10,有没有直接的方法,或者我必须循环创建一个新的 DataFrame?【参考方案11】:你也可以使用 .apply:
df.apply(lambda row: row[df['B'].isin(['one','three'])])
它实际上是按行工作的(即将函数应用于每一行)。
输出是
A B C D
0 foo one 0 0
1 bar one 1 2
3 bar three 3 6
6 foo one 6 12
7 foo three 7 14
结果与@unutbu提到的使用相同
df[[df['B'].isin(['one','three'])]]
【讨论】:
【参考方案12】:如果您想重复查询您的数据框并且速度对您很重要,最好的办法是将您的数据框转换为字典,然后通过这样做您可以使查询速度提高数千倍。
my_df = df.set_index(column_name)
my_dict = my_df.to_dict('index')
制作 my_dict 字典后可以浏览:
if some_value in my_dict.keys():
my_result = my_dict[some_value]
如果您在 column_name 中有重复值,则无法制作字典。但你可以使用:
my_result = my_df.loc[some_value]
【讨论】:
以上是关于如何根据列值从 DataFrame 中选择行?的主要内容,如果未能解决你的问题,请参考以下文章