OpenCV 3.0 正态贝叶斯分类器错误
Posted
技术标签:
【中文标题】OpenCV 3.0 正态贝叶斯分类器错误【英文标题】:OpenCV 3.0 Normal Bayes Classifier error 【发布时间】:2015-07-09 12:42:52 【问题描述】:我正在尝试为一袋词创建分类器。我在这个网站 (here) 上发现了一个问题,它帮助我将下面的代码放在一起,但我被困在classifier->train(trainingData,ml::ROW_SAMPLE, labels);
。本质上,程序运行良好,但是当它到达这一行时,程序崩溃了。显然,这条线正在执行除以零,因此崩溃了。我查看了代码,但找不到错误。这可能是来自 openCV 2 -> 3 的翻译错误,不太确定。任何帮助将不胜感激!
#include <opencv2/core/core.hpp>
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/ml.hpp>
#include <iostream>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
using namespace std;
using namespace cv;
#define TRAINING_DATA_DIR "testImages/"
#define EVAL_DATA_DIR "evalImages/"
int dictSize = 1000;
TermCriteria tc(CV_TERMCRIT_ITER, 10, 0.001);
int retries = 1;
int flags = KMEANS_PP_CENTERS;
Ptr<FeatureDetector> detector = xfeatures2d::SURF::create();
Ptr<DescriptorExtractor> extractor = xfeatures2d::SURF::create();
Ptr<DescriptorMatcher> matcher = FlannBasedMatcher::create("FlannBased");
BOWKMeansTrainer bowTrainer(dictSize, tc, retries, flags);
BOWImgDescriptorExtractor bowDE(extractor, matcher);
void extractTrainingVocabulary(string path)
struct dirent *de = NULL;
DIR *d = NULL;
d = opendir(path.c_str());
if(d == NULL)
cerr << "Couldn't open directory" << endl;
else
// Add all the names of the files to be processed to a vector
vector<string> files;
while ((de = readdir(d)))
string nameOfFile(de->d_name);
if ((strcmp(de->d_name,".") != 0) && (strcmp(de->d_name,"..") != 0) && (strcmp(de->d_name,".DS_Store") != 0))
files.push_back(nameOfFile);
// Loop through all elements
for (int f = 0; f < files.size(); f++)
string fullPath = "./";
fullPath += TRAINING_DATA_DIR;
fullPath += files[f];
cout << "[" << f+1 << "/" << files.size() << "]\tProcessing image: " << fullPath << endl;
Mat input = imread(fullPath);
if (!input.empty())
// Find all keypoints
vector<KeyPoint> keypoints;
detector->detect(input, keypoints);
if (keypoints.empty())
cerr << "Warning! could not find any keypoints in image " << fullPath << endl;
else
// Extract the features
Mat features;
extractor->compute(input, keypoints, features);
// Add them to the trainer
bowTrainer.add(features);
else
cerr << "Could not read image " << fullPath << endl;
void extractBOWDescriptor(string path, Mat& descriptors, Mat& labels)
struct dirent *de = NULL;
DIR *d = NULL;
d = opendir(path.c_str());
if(d == NULL)
cerr << "Couldn't open directory" << endl;
else
// Add all the names of the files to be processed to a vector
vector<string> files;
while ((de = readdir(d)))
string nameOfFile(de->d_name);
if ((strcmp(de->d_name,".") != 0) && (strcmp(de->d_name,"..") != 0) && (strcmp(de->d_name,".DS_Store") != 0))
files.push_back(nameOfFile);
// Loop through all elements
for (int f = 0; f < files.size(); f++)
string fullPath = "./";
fullPath += EVAL_DATA_DIR;
fullPath += files[f];
cout << "[" << f+1 << "/" << files.size() << "]\tProcessing image: " << fullPath << endl;
Mat input = imread(fullPath);
if (!input.empty())
// Find all keypoints
vector<KeyPoint> keypoints;
detector->detect(input, keypoints);
if (keypoints.empty())
cerr << "Warning! could not find any keypoints in image " << fullPath << endl;
else
Mat bowDescriptor;
bowDE.compute(input, keypoints, bowDescriptor);
descriptors.push_back(bowDescriptor);
// Current file
string fileName = files[f];
// Strip extension
fileName.erase (fileName.end()-4, fileName.end());
float label = atof(fileName.c_str());
cout << "Filename: " << fileName << endl;
labels.push_back(label);
else
cerr << "Could not read image " << fullPath << endl;
int main(int argc, char ** argv)
// ============================ LEARN ============================
cout << "Creating dict" << endl;
extractTrainingVocabulary(TRAINING_DATA_DIR);
vector<Mat> descriptors = bowTrainer.getDescriptors();
int count=0;
for(vector<Mat>::iterator iter=descriptors.begin();iter!=descriptors.end();iter++)
count+=iter->rows;
cout << "Clustering " << count << " features. This might take a while..." << endl;
Mat dictionary = bowTrainer.cluster();
cout << "Writing to dict...";
FileStorage fs("dict.yml",FileStorage::WRITE);
fs << "vocabulary" << dictionary;
fs.release();
cout << "Done!" << endl;
// =========================== EXTRACT ===========================
// This will have to be loaded if we run it in two different instances
bowDE.setVocabulary(dictionary);
cout << "Processing training data..." << endl;
Mat trainingData(0, dictSize, CV_32FC1);
Mat labels(0,1,CV_32FC1);
extractBOWDescriptor(EVAL_DATA_DIR, trainingData, labels);
Ptr<ml::NormalBayesClassifier> classifier = ml::NormalBayesClassifier::create();
if (trainingData.data == NULL || labels.data == NULL)
cerr << "Mats are NULL!!" << endl;
else
classifier->train(trainingData,ml::ROW_SAMPLE, labels);
//#warning Not yet tested
// cout << "Processing evaluation data" << endl;
// Mat evalData(0,dictSize,CV_32FC1);
// Mat groundTruth(0,1,CV_32FC1);
// extractBOWDescriptor(EVAL_DATA_DIR, evalData, groundTruth);
return 0;
编辑
这里的要求是错误。
通过终端:Floating point exception: 8
X 代码 6:Thread 1:EXC_ARITHMETIC (code=EXC_i386_DIV, subcode=0x0)
【问题讨论】:
【参考方案1】:请尝试更改
labels.push_back(label);
到
labels.push_back((int)label);
我在 SVM 训练中遇到了同样的问题,并意识到类标签必须是整数。
干杯!
【讨论】:
【参考方案2】:只是为了分享我如何在我的 os x 项目中解决同样的问题。
显然,包含标签的矩阵似乎也是我项目中的问题。出于某种奇怪的原因,以任何其他方式创建矩阵,或将推入矩阵的值强制转换为 int 对我来说不起作用。
问题只能通过遵循 OpenCV 3.0.0 SVM 教程的示例代码初始化其标签矩阵的方式来解决。 OpenCV SVM tutorial
经过:
int labels[4] = 1, -1, -1, -1;
Mat labelsMat(4, 1, CV_32SC1, labels);
在我将标签矩阵更改为从整数标签数组中初始化后,错误消失了。
【讨论】:
以上是关于OpenCV 3.0 正态贝叶斯分类器错误的主要内容,如果未能解决你的问题,请参考以下文章