与 openmp 的 10 维蒙特卡罗集成
Posted
技术标签:
【中文标题】与 openmp 的 10 维蒙特卡罗集成【英文标题】:10 dimensional Monte Carlo integration with openmp 【发布时间】:2017-03-13 05:28:29 【问题描述】:我正在尝试使用 openmp 学习并行化。我编写了一个 c++ 脚本,通过 MC 计算函数的 10 维积分: F = x1+ x2 + x3 +...+x10
现在我正在尝试将其转换为与具有 4 个线程的 openmp 一起使用。我的串行代码给出了可理解的输出,所以我有点相信它可以正常工作。 这是我的序列号: 我想为 N = 样本点数的每 4^k 次迭代输出。
/* compile with
$ g++ -o monte ND_MonteCarlo.cpp
$ ./monte N
unsigned long long int for i, N
Maximum value for UNSIGNED LONG LONG INT 18446744073709551615
*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
//define multivariate function F(x1, x2, ...xk)
double f(double x[], int n)
double y;
int j;
y = 0.0;
for (j = 0; j < n; j = j+1)
y = y + x[j];
y = y;
return y;
//define function for Monte Carlo Multidimensional integration
double int_mcnd(double(*fn)(double[],int),double a[], double b[], int n, int m)
double r, x[n], v;
int i, j;
r = 0.0;
v = 1.0;
// step 1: calculate the common factor V
for (j = 0; j < n; j = j+1)
v = v*(b[j]-a[j]);
// step 2: integration
for (i = 1; i <= m; i=i+1)
// calculate random x[] points
for (j = 0; j < n; j = j+1)
x[j] = a[j] + (rand()) /( (RAND_MAX/(b[j]-a[j])));
r = r + fn(x,n);
r = r*v/m;
return r;
double f(double[], int);
double int_mcnd(double(*)(double[],int), double[], double[], int, int);
int main(int argc, char **argv)
/* define how many integrals */
const int n = 10;
double b[n] = 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0,5.0;
double a[n] = -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0,-5.0;
double result, mean;
int m;
unsigned long long int i, N;
// initial seed value (use system time)
srand(time(NULL));
cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);
// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time (NULL);
m = 4; // initial number of intervals
// convert command-line input to N = number of points
N = atoi( argv[1] );
for (i=0; i <=N/pow(4,i); i++)
result = int_mcnd(f, a, b, n, m);
mean = result/(pow(10,10));
cout << setw(30) << m << setw(30) << result << setw(30) << mean <<endl;
m = m*4;
// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time (NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;
return 0;
和输出:
N integral mean_integral
4 62061079725.185936 6.206108
16 33459275100.477665 3.345928
64 -2204654740.788784 -0.220465
256 4347440045.990804 0.434744
1024 -1265056243.116922 -0.126506
4096 681660387.953380 0.068166
16384 -799507050.896809 -0.079951
65536 -462592561.594820 -0.046259
262144 50902035.836772 0.005090
1048576 -91104861.129695 -0.009110
4194304 3746742.588701 0.000375
16777216 -32967862.853915 -0.003297
67108864 17730924.602974 0.001773
268435456 -416824.977687 -0.00004
1073741824 2843188.477219 0.000284
但我认为我的并行代码根本不起作用。我当然知道我在做一些傻事。由于我的线程数是 4,我想将结果除以 4,结果很荒谬。
这是相同代码的并行版本:
/* compile with
$ g++ -fopenmp -Wunknown-pragmas -std=c++11 -o mcOMP parallel_ND_MonteCarlo.cpp -lm
$ ./mcOMP N
unsigned long long int for i, N
Maximum value for UNSIGNED LONG LONG INT 18446744073709551615
*/
#include <iostream>
#include <fstream>
#include <iomanip>
#include <cmath>
#include <cstdlib>
#include <ctime>
#include <omp.h>
using namespace std;
//define multivariate function F(x1, x2, ...xk)
double f(double x[], int n)
double y;
int j;
y = 0.0;
for (j = 0; j < n; j = j+1)
y = y + x[j];
y = y;
return y;
//define function for Monte Carlo Multidimensional integration
double int_mcnd(double(*fn)(double[],int),double a[], double b[], int n, int m)
double r, x[n], v;
int i, j;
r = 0.0;
v = 1.0;
// step 1: calculate the common factor V
#pragma omp for
for (j = 0; j < n; j = j+1)
v = v*(b[j]-a[j]);
// step 2: integration
#pragma omp for
for (i = 1; i <= m; i=i+1)
// calculate random x[] points
for (j = 0; j < n; j = j+1)
x[j] = a[j] + (rand()) /( (RAND_MAX/(b[j]-a[j])));
r = r + fn(x,n);
r = r*v/m;
return r;
double f(double[], int);
double int_mcnd(double(*)(double[],int), double[], double[], int, int);
int main(int argc, char **argv)
/* define how many integrals */
const int n = 10;
double b[n] = 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0;
double a[n] = -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0,-5.0;
double result, mean;
int m;
unsigned long long int i, N;
int NumThreads = 4;
// initial seed value (use system time)
srand(time(NULL));
cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);
// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time (NULL);
m = 4; // initial number of intervals
// convert command-line input to N = number of points
N = atoi( argv[1] );
#pragma omp parallel private(result, mean) shared(N, m) num_threads(NumThreads)
for (i=0; i <=N/pow(4,i); i++)
result = int_mcnd(f, a, b, n, m);
mean = result/(pow(10,10));
#pragma omp master
cout << setw(30) << m/4 << setw(30) << result/4 << setw(30) << mean/4 <<endl;
m = m*4;
// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time (NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;
return 0;
我只希望主线程输出值。 我编译:
g++ -fopenmp -Wunknown-pragmas -std=c++11 -o mcOMP parallel_ND_MonteCarlo.cpp -lm
非常感谢您对修复代码的帮助和建议。非常感谢。
【问题讨论】:
【参考方案1】:让我们看看你的程序做了什么。在omp parallel
,您的线程被生成,它们将并行执行剩余的代码。像这样的操作:
m = m * 4;
未定义(通常没有意义,因为它们每次迭代执行四次)。
此外,当这些线程遇到omp for
时,它们将共享循环的工作,即每个迭代将仅由某个线程执行一次。由于int_mcnd
在parallel
区域内执行,它的所有局部变量都是私有的。您的代码中没有构造来实际收集这些私有结果(result
和 mean
也是私有的)。
正确的做法是使用带有reduction
子句的并行for循环,表示有一个变量(r
/v
)在整个循环执行过程中被聚合。
为此,需要将归约变量声明为在并行区域范围之外的共享变量。最简单的解决方案是移动int_mcnd
内部的并行区域。这也避免了m
的竞争条件。
还有一个障碍:rand
正在使用全局状态,至少我的实现被锁定。由于大部分时间都花在rand
上,因此您的代码会严重扩展。解决方案是通过rand_r
使用显式线程私有状态。 (另见this question)。
拼凑起来,修改后的代码如下:
double int_mcnd(double (*fn)(double[], int), double a[], double b[], int n, int m)
// Reduction variables need to be shared
double r = 0.0;
double v = 1.0;
#pragma omp parallel
// All variables declared inside are private
// step 1: calculate the common factor V
#pragma omp for reduction(* : v)
for (int j = 0; j < n; j = j + 1)
v = v * (b[j] - a[j]);
// step 2: integration
unsigned int private_seed = omp_get_thread_num();
#pragma omp for reduction(+ : r)
for (int i = 1; i <= m; i = i + 1)
// Note: X MUST be private, otherwise, you have race-conditions again
double x[n];
// calculate random x[] points
for (int j = 0; j < n; j = j + 1)
x[j] = a[j] + (rand_r(&private_seed)) / ((RAND_MAX / (b[j] - a[j])));
r = r + fn(x, n);
r = r * v / m;
return r;
double f(double[], int);
double int_mcnd(double (*)(double[], int), double[], double[], int, int);
int main(int argc, char** argv)
/* define how many integrals */
const int n = 10;
double b[n] = 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0 ;
double a[n] = -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0, -5.0 ;
int m;
unsigned long long int i, N;
int NumThreads = 4;
// initial seed value (use system time)
srand(time(NULL));
cout.precision(6);
cout.setf(ios::fixed | ios::showpoint);
// current time in seconds (begin calculations)
time_t seconds_i;
seconds_i = time(NULL);
m = 4; // initial number of intervals
// convert command-line input to N = number of points
N = atoi(argv[1]);
for (i = 0; i <= N / pow(4, i); i++)
double result = int_mcnd(f, a, b, n, m);
double mean = result / (pow(10, 10));
cout << setw(30) << m << setw(30) << result << setw(30) << mean << endl;
m = m * 4;
// current time in seconds (end of calculations)
time_t seconds_f;
seconds_f = time(NULL);
cout << endl << "total elapsed time = " << seconds_f - seconds_i << " seconds" << endl << endl;
return 0;
请注意,我删除了除以四,并且输出是在并行区域之外完成的。结果应该与串行版本相似(当然随机性除外)。
我观察到在使用 -O3
的 16 核系统上实现了完美的 16 倍加速。
补充几点:
尽可能在本地声明变量。
如果线程开销会成为问题,您可以将并行区域移到外部,但是您需要更仔细地考虑并行执行,并找到共享归约变量的解决方案。鉴于 Monte Carlo 代码具有令人尴尬的并行特性,您可以通过删除 omp for
指令更紧密地坚持初始解决方案 - 这意味着每个线程都执行 all 循环迭代。然后你可以手动总结结果变量并打印出来。但我真的不明白这一点。
【讨论】:
我仍在学习曲线中,非常感谢您的详细说明【参考方案2】:我不会详细介绍,但会给出一些建议
以这部分代码为例:
// step 1: calculate the common factor V
#pragma omp for
for (j = 0; j < n; j = j+1)
v = v*(b[j]-a[j]);
如果您查看变量 v ,则很明显存在竞争条件。也就是说,您必须将 v 声明为线程私有(可能称为 local_v),然后通过归约操作将所有值收集到 global_v 值中。
一般来说,我建议您为 openmp 寻找竞争条件、关键区域、共享和私有内存的概念。
【讨论】:
虽然我只能支持您的一般建议,但特定变量v
已经是私有的,因为它是在函数外部的 parallel
区域内声明的。以上是关于与 openmp 的 10 维蒙特卡罗集成的主要内容,如果未能解决你的问题,请参考以下文章
NodeJS:具有多线程的本机 C++ 模块(openmp)