对 pcm 数据应用 FFT 并转换为频谱图
Posted
技术标签:
【中文标题】对 pcm 数据应用 FFT 并转换为频谱图【英文标题】:Apply FFT on pcm data and convert to a spectrogram 【发布时间】:2013-07-02 01:33:49 【问题描述】:我目前在 VS2012 中使用 Metro 应用程序。我有一个 c# 代码,可以记录用户的声音并将其保存到 wav 文件中(16 位、44.1kHz、单声道)。我已将 PCM 处理为仅包含值介于 -1 和 1 之间的双数组数据,如下所示。
下一步是我想要做的就是对双数组数据应用 FFT 并将其转换为频谱图。我想知道是否有任何 FFT 算法可以在不使用任何库的情况下接收双数组。
我还想知道是否有任何方法可以使用 Metro 将此数据(应用 FFT 后)转换为频谱图(稍后用于与另一个频谱图进行比较)。
我的双数组值的一部分示例,我想用它对其应用 FFT 以获取频率并直观地显示它。
这是处理我的 PCM 数据的代码:
public static Double[] prepare(String wavePath)
Double[] data;
byte[] wave;
byte[] sR = new byte[4];
System.IO.FileStream WaveFile = System.IO.File.OpenRead(wavePath);
wave = new byte[WaveFile.Length];
data = new Double[(wave.Length - 44) / 4];//shifting the headers out of the PCM data;
WaveFile.Read(wave, 0, Convert.ToInt32(WaveFile.Length));//read the wave file into the wave variable
/***********Converting and PCM accounting***************/
for (int i = 0; i < data.Length; i++)
data[i] = BitConverter.ToInt16(wave, i * 2) / 32768.0;
//65536.0.0=2^n, n=bits per sample;
return data;
已编辑 这是我的输出:
-3.0517578125E-05
-3.0517578125E-05
-3.0517578125E-05
-3.0517578125E-05
-6.103515625E-05
-9.1552734375E-05
-6.103515625E-05
-6.103515625E-05
-6.103515625E-05
-6.103515625E-05
-9.1552734375E-05
-6.103515625E-05
-9.1552734375E-05
-6.103515625E-05
-9.1552734375E-05
-6.103515625E-05
【问题讨论】:
你知道为什么每一个数字都是0吗?看起来很奇怪...... 我不确定。对我来说也有点奇怪。也许如果我提出我用来处理我的 pcm 数据的代码,你可以为我指出来 您将 i 增加 2 并写入 data[i],因此您只写入每隔一个字段。你需要将 i 加一。例如i++ 并使用 BitConverter.ToInt16(wave, i*2) 读出字节。而且我还想知道为什么您在读取数据时不考虑 PCM 标头的偏移量?也许“我”应该从 44 开始? How to generate the audio spectrum using fft in C++? 的可能重复项 @thalm 嗨,我已经编辑了代码。您可以忽略我删除的部分,其中 i = 28 是为了识别采样率。我设法得到 -1 和 1 之间的值,如我的输出所示。但是,我在开始时有一些值,其间有很多 0。这是一个问题还是应该这样做? 【参考方案1】:如果您在 Google 上搜索 c# FFT,您会找到可能的代码示例。这个看起来不错,我找到了here。有趣的是,您可以使用您的数据,每秒钟都带有 0 作为 FFT 表的输入,如果您愿意,它需要复数。
始终确保您的数据包具有 2 个样本计数的幂。
/// <summary>
/// Compute the forward or inverse Fourier Transform of data, with data
/// containing complex valued data as alternating real and imaginary
/// parts. The length must be a power of 2. This method caches values
/// and should be slightly faster on than the FFT method for repeated uses.
/// It is also slightly more accurate. Data is transformed in place.
/// </summary>
/// <param name="data">The complex data stored as alternating real
/// and imaginary parts</param>
/// <param name="forward">true for a forward transform, false for
/// inverse transform</param>
public void TableFFT(double[] data, bool forward)
var n = data.Length;
// checks n is a power of 2 in 2's complement format
if ((n & (n - 1)) != 0)
throw new ArgumentException(
"data length " + n + " in FFT is not a power of 2"
);
n /= 2; // n is the number of samples
Reverse(data, n); // bit index data reversal
// make table if needed
if ((cosTable == null) || (cosTable.Length != n))
Initialize(n);
// do transform: so single point transforms, then doubles, etc.
double sign = forward ? B : -B;
var mmax = 1;
var tptr = 0;
while (n > mmax)
var istep = 2 * mmax;
for (var m = 0; m < istep; m += 2)
var wr = cosTable[tptr];
var wi = sign * sinTable[tptr++];
for (var k = m; k < 2 * n; k += 2 * istep)
var j = k + istep;
var tempr = wr * data[j] - wi * data[j + 1];
var tempi = wi * data[j] + wr * data[j + 1];
data[j] = data[k] - tempr;
data[j + 1] = data[k + 1] - tempi;
data[k] = data[k] + tempr;
data[k + 1] = data[k + 1] + tempi;
mmax = istep;
// perform data scaling as needed
Scale(data, n, forward);
/// <summary>
/// Compute the forward or inverse Fourier Transform of data, with
/// data containing real valued data only. The output is complex
/// valued after the first two entries, stored in alternating real
/// and imaginary parts. The first two returned entries are the real
/// parts of the first and last value from the conjugate symmetric
/// output, which are necessarily real. The length must be a power
/// of 2.
/// </summary>
/// <param name="data">The complex data stored as alternating real
/// and imaginary parts</param>
/// <param name="forward">true for a forward transform, false for
/// inverse transform</param>
public void RealFFT(double[] data, bool forward)
var n = data.Length; // # of real inputs, 1/2 the complex length
// checks n is a power of 2 in 2's complement format
if ((n & (n - 1)) != 0)
throw new ArgumentException(
"data length " + n + " in FFT is not a power of 2"
);
var sign = -1.0; // assume inverse FFT, this controls how algebra below works
if (forward)
// do packed FFT. This can be changed to FFT to save memory
TableFFT(data, true);
sign = 1.0;
// scaling - divide by scaling for N/2, then mult by scaling for N
if (A != 1)
var scale = Math.Pow(2.0, (A - 1) / 2.0);
for (var i = 0; i < data.Length; ++i)
data[i] *= scale;
var theta = B * sign * 2 * Math.PI / n;
var wpr = Math.Cos(theta);
var wpi = Math.Sin(theta);
var wjr = wpr;
var wji = wpi;
for (var j = 1; j <= n/4; ++j)
var k = n / 2 - j;
var tkr = data[2 * k]; // real and imaginary parts of t_k = t_(n/2 - j)
var tki = data[2 * k + 1];
var tjr = data[2 * j]; // real and imaginary parts of t_j
var tji = data[2 * j + 1];
var a = (tjr - tkr) * wji;
var b = (tji + tki) * wjr;
var c = (tjr - tkr) * wjr;
var d = (tji + tki) * wji;
var e = (tjr + tkr);
var f = (tji - tki);
// compute entry y[j]
data[2 * j] = 0.5 * (e + sign * (a + b));
data[2 * j + 1] = 0.5 * (f + sign * (d - c));
// compute entry y[k]
data[2 * k] = 0.5 * (e - sign * (b + a));
data[2 * k + 1] = 0.5 * (sign * (d - c) - f);
var temp = wjr;
// todo - allow more accurate version here? make option?
wjr = wjr * wpr - wji * wpi;
wji = temp * wpi + wji * wpr;
if (forward)
// compute final y0 and y_N/2, store in data[0], data[1]
var temp = data[0];
data[0] += data[1];
data[1] = temp - data[1];
else
var temp = data[0]; // unpack the y0 and y_N/2, then invert FFT
data[0] = 0.5 * (temp + data[1]);
data[1] = 0.5 * (temp - data[1]);
// do packed inverse (table based) FFT. This can be changed to regular inverse FFT to save memory
TableFFT(data, false);
// scaling - divide by scaling for N, then mult by scaling for N/2
//if (A != -1) // todo - off by factor of 2? this works, but something seems weird
var scale = Math.Pow(2.0, -(A + 1) / 2.0)*2;
for (var i = 0; i < data.Length; ++i)
data[i] *= scale;
/// <summary>
/// Determine how scaling works on the forward and inverse transforms.
/// For size N=2^n transforms, the forward transform gets divided by
/// N^((1-a)/2) and the inverse gets divided by N^((1+a)/2). Common
/// values for (A,B) are
/// ( 0, 1) - default
/// (-1, 1) - data processing
/// ( 1,-1) - signal processing
/// Usual values for A are 1, 0, or -1
/// </summary>
public int A get; set;
/// <summary>
/// Determine how phase works on the forward and inverse transforms.
/// For size N=2^n transforms, the forward transform uses an
/// exp(B*2*pi/N) term and the inverse uses an exp(-B*2*pi/N) term.
/// Common values for (A,B) are
/// ( 0, 1) - default
/// (-1, 1) - data processing
/// ( 1,-1) - signal processing
/// Abs(B) should be relatively prime to N.
/// Setting B=-1 effectively corresponds to conjugating both input and
/// output data.
/// Usual values for B are 1 or -1.
/// </summary>
public int B get; set;
/// <summary>
/// Scale data using n samples for forward and inverse transforms as needed
/// </summary>
/// <param name="data"></param>
/// <param name="n"></param>
/// <param name="forward"></param>
void Scale(double[] data, int n, bool forward)
// forward scaling if needed
if ((forward) && (A != 1))
var scale = Math.Pow(n, (A - 1) / 2.0);
for (var i = 0; i < data.Length; ++i)
data[i] *= scale;
// inverse scaling if needed
if ((!forward) && (A != -1))
var scale = Math.Pow(n, -(A + 1) / 2.0);
for (var i = 0; i < data.Length; ++i)
data[i] *= scale;
【讨论】:
以上是关于对 pcm 数据应用 FFT 并转换为频谱图的主要内容,如果未能解决你的问题,请参考以下文章
wav音频文件解析读取 定点转浮点分析 幅值提取(C语言实现)
在将数据输入 FFT 用于音频频谱分析仪之前,使用 python 将 wav 文件转换为 csv 文件 [关闭]