如何加入(合并)数据框(内、外、左、右)

Posted

技术标签:

【中文标题】如何加入(合并)数据框(内、外、左、右)【英文标题】:How to join (merge) data frames (inner, outer, left, right) 【发布时间】:2010-11-20 22:55:50 【问题描述】:

给定两个数据框:

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))

df1
#  CustomerId Product
#           1 Toaster
#           2 Toaster
#           3 Toaster
#           4   Radio
#           5   Radio
#           6   Radio

df2
#  CustomerId   State
#           2 Alabama
#           4 Alabama
#           6    Ohio

我该如何做数据库样式,即sql style, joins?也就是我怎么得到:

df1df2 中的一个 inner join: 仅返回左表在右表中有匹配键的行。 df1df2 中的一个 outer join: 返回两个表中的所有行,从左侧连接右侧表中具有匹配键的记录。 left outer join (or simply left join) 的 df1df2 返回左表中的所有行,以及右表中具有匹配键的所有行。 right outer join 的 df1df2 返回右表中的所有行,以及左表中具有匹配键的所有行。

额外功劳:

如何执行 SQL 风格的选择语句?

【问题讨论】:

由 RStudio 创建和维护的 dplyr 备忘单的数据转换也有关于连接如何在 dplyr 中工作的很好的信息图表rstudio.com/resources/cheatsheets 如果您来这里是想了解合并 pandas 数据帧,可以在 here 找到该资源。 对于@isomorphismes 链接这里是当前存档版本:web.archive.org/web/20190312112515/http://stat545.com/… 【参考方案1】:

R Wiki 有一些很好的例子。我会在这里偷一对:

合并方法

由于您的键名相同,因此进行内部连接的简便方法是 merge():

merge(df1,df2)

可以使用“all”关键字创建完整的内连接(两个表中的所有记录):

merge(df1,df2, all=TRUE)

df1 和 df2 的左外连接:

merge(df1,df2, all.x=TRUE)

df1 和 df2 的右外连接:

merge(df1,df2, all.y=TRUE)

您可以翻转它们、拍打它们并揉搓它们以获得您询问的另外两个外连接:)

下标法

使用下标方法在左侧与 df1 进行左外连接将是:

df1[,"State"]<-df2[df1[ ,"Product"], "State"]

可以通过修改左外连接下标示例来创建外连接的其他组合。 (是的,我知道这相当于说“我会把它作为练习留给读者......”)

【讨论】:

应该是:“拍它,翻转它,揉它”,但这是一个很好的努力。 ;-)【参考方案2】:

通过使用merge 函数及其可选参数:

内连接: merge(df1, df2) 将适用于这些示例,因为 R 会通过常用变量名自动连接框架,但您很可能希望指定 merge(df1, df2, by = "CustomerId")以确保您只匹配所需的字段。如果匹配的变量在不同的数据框中具有不同的名称,您也可以使用by.xby.y 参数。

外部连接: merge(x = df1, y = df2, by = "CustomerId", all = TRUE)

左外: merge(x = df1, y = df2, by = "CustomerId", all.x = TRUE)

右外: merge(x = df1, y = df2, by = "CustomerId", all.y = TRUE)

交叉加入: merge(x = df1, y = df2, by = NULL)

与内部连接一样,您可能希望将“CustomerId”作为匹配变量显式传递给 R。 我认为几乎总是最好显式声明您想要的标识符合并;如果输入的 data.frames 发生意外变化会更安全,并且以后更易于阅读。

您可以通过给by 一个向量来合并多个列,例如by = c("CustomerId", "OrderId")

如果要合并的列名不同,可以指定,例如by.x = "CustomerId_in_df1", by.y = "CustomerId_in_df2",其中CustomerId_in_df1是第一个数据框中的列名,CustomerId_in_df2是第一个数据框中的列名第二个数据框。 (如果您需要在多列上合并,这些也可以是向量。)

【讨论】:

@MattParker 我一直在使用 sqldf 包对数据帧进行大量复杂查询,真的需要它来进行自交叉连接(即 data.frame 交叉连接本身)我想知道它是如何实现的从性能的角度进行比较....??? @ADP 我从来没有真正使用过 sqldf,所以我不确定速度。如果性能对您来说是一个主要问题,您还应该查看 data.table 包 - 这是一套全新的连接语法,但它比我们在这里谈论的任何东西都要快。 更加清晰和解释.....mkmanu.wordpress.com/2016/04/08/… 一个对我有帮助的小补充 - 当你想使用多列合并时:merge(x=df1,y=df2, by.x=c("x_col1","x_col2"), by.y=c("y_col1","y_col2")) 现在可以在data.table 使用,同样的功能更快。【参考方案3】:

我建议查看Gabor Grothendieck's sqldf package,它允许您在 SQL 中表达这些操作。

library(sqldf)

## inner join
df3 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              JOIN df2 USING(CustomerID)")

## left join (substitute 'right' for right join)
df4 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              LEFT JOIN df2 USING(CustomerID)")

我发现 SQL 语法比它的 R 语法更简单、更自然(但这可能只是反映了我对 RDBMS 的偏见)。

有关联接的更多信息,请参阅Gabor's sqldf GitHub。

【讨论】:

【参考方案4】:

内部连接有 data.table 方法,它非常节省时间和内存(对于一些较大的 data.frames 是必需的):

library(data.table)

dt1 <- data.table(df1, key = "CustomerId") 
dt2 <- data.table(df2, key = "CustomerId")

joined.dt1.dt.2 <- dt1[dt2]

merge 也适用于 data.tables(因为它是通用的并调用 merge.data.table

merge(dt1, dt2)

*** 上记录的 data.table:How to do a data.table merge operationTranslating SQL joins on foreign keys to R data.table syntaxEfficient alternatives to merge for larger data.frames RHow to do a basic left outer join with data.table in R?

另一个选项是plyr 包中的join 函数

library(plyr)

join(df1, df2,
     type = "inner")

#   CustomerId Product   State
# 1          2 Toaster Alabama
# 2          4   Radio Alabama
# 3          6   Radio    Ohio

type 的选项:innerleftrightfull

来自?join:与merge 不同,无论使用何种连接类型,[join] 都会保留 x 的顺序。

【讨论】:

+1 用于提及plyr::join。微基准测试表明,它的执行速度比 merge 快约 3 倍。 但是,data.table 比两者都快得多。在 SO 中也有很大的支持,我没有看到很多包作者像 data.table 作家或贡献者那样经常在这里回答问题。 请注意:dt1[dt2] 是右外连接(不是“纯”内连接),因此来自 dt2 的所有行都将成为结果的一部分,即使dt1 中没有匹配的行。影响:如果 dt2 中的键值与 dt1 的键值不匹配,您的结果可能包含不需要的行 @RYoda 在这种情况下你可以指定nomatch = 0L【参考方案5】:

2014 年的新功能:

特别是如果您也对一般的数据操作(包括排序、过滤、子集、汇总等)感兴趣,您绝对应该看看dplyr,它带有各种旨在促进您的工作专门用于数据框和某些其他数据库类型。它甚至提供了相当精细的 SQL 接口,甚至提供了将(大部分)SQL 代码直接转换为 R 的函数。

dplyr 包中与加入相关的四个函数是(引用):

inner_join(x, y, by = NULL, copy = FALSE, ...): 返回所有行 x 其中 y 中有匹配的值,以及来自 x 和 y 的所有列 left_join(x, y, by = NULL, copy = FALSE, ...): 返回 x 的所有行,以及 x 和 y 的所有列 semi_join(x, y, by = NULL, copy = FALSE, ...):返回 x 中存在匹配值的所有行 y,只保留来自 x 的列。 anti_join(x, y, by = NULL, copy = FALSE, ...): 从 x 返回所有行 y 中没有匹配的值,只保留来自 x 的列

全部都是here,非常详细。

选择列可以由select(df,"column") 完成。如果这对您来说还不够 SQL-ish,那么有 sql() 函数,您可以在其中输入 SQL 代码,它会执行您指定的操作,就像您一直在用 R 编写的一样(了解更多信息,请参考dplyr/databases vignette)。例如,如果应用正确,sql("SELECT * FROM hflights") 将从“hflights”dplyr 表(一个“tbl”)中选择所有列。

【讨论】:

鉴于 dplyr 软件包在过去两年中获得的重要性,绝对是最佳解决方案。【参考方案6】:

您也可以使用 Hadley Wickham 的出色 dplyr 包进行连接。

library(dplyr)

#make sure that CustomerId cols are both type numeric
#they ARE not using the provided code in question and dplyr will complain
df1$CustomerId <- as.numeric(df1$CustomerId)
df2$CustomerId <- as.numeric(df2$CustomerId)

变异连接:使用 df2 中的匹配项向 df1 添加列

#inner
inner_join(df1, df2)

#left outer
left_join(df1, df2)

#right outer
right_join(df1, df2)

#alternate right outer
left_join(df2, df1)

#full join
full_join(df1, df2)

过滤连接:过滤掉df1中的行,不要修改列

semi_join(df1, df2) #keep only observations in df1 that match in df2.
anti_join(df1, df2) #drops all observations in df1 that match in df2.

【讨论】:

为什么需要将CustomerId 转换为数字?我在文档(plyrdplyr)中没有看到任何关于此类限制的提及。如果合并列是character 类型(特别是对plyr 感兴趣),您的代码会无法正常工作吗?我错过了什么吗? 可以使用 semi_join(df1, df2, df3, df4) 只保留 df1 中与其余列匹配的观察值吗? @GhoseBishwajit 假设您指的是其余数据帧而不是列,如果它们具有相同的结构,您可以在 df2、df3 和 df4 上使用 rbind,例如semi_join(df1, rbind(df2, df3, df4)) 是的,我的意思是数据框。但它们与某些行上缺少一些结构不同。对于四个数据框,我有不同国家数量的四个不同指标(GDP、GNP GINI、MMR)的数据。我想以仅保留那些国家/地区的所有四个指标的方式加入数据框。 从 dplyr 交叉连接怎么样?【参考方案7】:

dplyr 自 0.4 以来实现了所有这些连接,包括 outer_join,但值得注意的是,在 0.4 之前的前几个版本中,它曾经不提供 outer_join,因此有很多非常糟糕的 hacky 解决方法用户代码在之后漂浮了很长一段时间(您仍然可以在 SO、Kaggle 答案、那个时期的 github 中找到这样的代码。因此这个答案仍然有用。)

加入相关release highlights:

v0.5 (6/2016)

处理 POSIXct 类型、时区、重复、不同因子级别。更好的错误和警告。 新的 suffix 参数来控制后缀重复的变量名称接收 (#1296)

v0.4.0 (1/2015)

Implement right join and outer join (#96) 变异连接,将新变量从另一个表中的匹配行添加到另一个表中。过滤连接,根据一个表中的观察值是否与另一个表中的观察值匹配来过滤它们。

v0.3 (10/2014)

现在可以通过每个表中的不同变量 left_join:df1 %>% left_join(df2, c("var1" = "var2"))

v0.2 (5/2014)

*_join() 不再对列名重新排序 (#324)

v0.1.3 (4/2014)

具有inner_join、left_join、semi_join、anti_join outer_join 尚未实现,备用是使用 base::merge() (或 plyr::join()) 还没有implement right_join and outer_join Hadley mentioning other advantages here 当前有一个次要功能合并,dplyr 不是 the ability to have separate by.x,by.y columns,例如Python pandas 可以。

该问题中每个 hadley 的 cmets 的解决方法:

right_join(x,y) 与 left_join(y,x) 的行数相同,只是列的顺序不同。使用 select(new_column_order) 轻松解决 outer_join 基本上是 union(left_join(x, y), right_join(x, y)) - 即保留两个数据帧中的所有行。

【讨论】:

@Gregor:不,它不应该被删除。对于 R 用户来说,重要的是要知道多年来一直缺少连接功能,因为那里的大多数代码都包含变通办法或临时手动实现,或带有索引向量的临时代码,或者更糟糕的是仍然避免使用这些包或操作。每周我都会在 SO 上看到这样的问题。我们将在未来许多年消除混乱。 @Gregor 和其他提出问题的人:更新、总结历史变化以及提出这个问题时几年来缺少的东西。这说明了为什么那个时期的代码主要是 hacky,或者避免使用 dplyr 连接并退回到合并。如果您检查 SO 和 Kaggle 上的历史代码库,您仍然可以看到采用延迟以及由此导致的严重混淆的用户代码。如果您仍然发现缺少此答案,请告诉我。 @Gregor:我们这些在 2014 年年中采用它的人并没有选择最佳时机。 (我以为 2013 年左右有更早的(0.0.x)版本,但不,我的错误。)不管怎样,到 2015 年仍然有很多垃圾代码,这就是我发布这篇文章的动机,我试图揭开神秘面纱我在 Kaggle、github、SO 上找到的垃圾。 是的,我明白,而且我认为你做得很好。 (我也是一个早期采用者,虽然我仍然喜欢 dplyr 语法,但从 lazyevalrlang 后端的更改为我破坏了一堆代码,这促使我了解更多 data.table,现在我主要使用data.table。) @Gregor:很有趣,你能指出我的任何问答(你的或其他人的)吗?似乎我们每个人对plyr/dplyr/data.table/tidyverse 的采用很大程度上取决于我们从哪一年开始,以及当时包裹的(胚胎)状态,而不是现在......【参考方案8】:

在连接两个数据帧时,每个数据帧大约有 100 万行,一个有 2 列,另一个有大约 20 列,我惊讶地发现 merge(..., all.x = TRUE, all.y = TRUE)dplyr::full_join() 更快。这是 dplyr v0.4

Merge 需要约 17 秒,full_join 需要约 65 秒。

一些食物,因为我通常默认使用 dplyr 来执行操作任务。

【讨论】:

【参考方案9】:
    使用merge函数我们可以选择左表或右表的变量,就像我们都熟悉SQL中的select语句一样(EX:Select a.* ...或Select b.* from ... ..)

    我们必须添加额外的代码,这些代码将从新加入的表中获取子集。

    SQL :- select a.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

    R :- merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df1)]

同样的方法

SQL :- select b.* from df1 a inner join df2 b on a.CustomerId=b.CustomerId

R :- merge(df1, df2, by.x = "CustomerId", by.y = "CustomerId")[,names(df2)]

【讨论】:

【参考方案10】:

更新用于连接数据集的 data.table 方法。请参阅以下每种连接类型的示例。有两种方法,一种来自[.data.table,将第二个data.table 作为第一个参数传递给子集,另一种方法是使用merge 函数,该函数调度到快速data.table 方法。

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2L, 4L, 7L), State = c(rep("Alabama", 2), rep("Ohio", 1))) # one value changed to show full outer join

library(data.table)

dt1 = as.data.table(df1)
dt2 = as.data.table(df2)
setkey(dt1, CustomerId)
setkey(dt2, CustomerId)
# right outer join keyed data.tables
dt1[dt2]

setkey(dt1, NULL)
setkey(dt2, NULL)
# right outer join unkeyed data.tables - use `on` argument
dt1[dt2, on = "CustomerId"]

# left outer join - swap dt1 with dt2
dt2[dt1, on = "CustomerId"]

# inner join - use `nomatch` argument
dt1[dt2, nomatch=NULL, on = "CustomerId"]

# anti join - use `!` operator
dt1[!dt2, on = "CustomerId"]

# inner join - using merge method
merge(dt1, dt2, by = "CustomerId")

# full outer join
merge(dt1, dt2, by = "CustomerId", all = TRUE)

# see ?merge.data.table arguments for other cases

基准测试基于 R、sqldf、dplyr 和 data.table。 基准测试未键入/未索引的数据集。 基准测试是在 50M-1 行数据集上执行的,连接列上有 50M-2 个公共值,因此可以测试每个场景(内、左、右、全),并且执行连接仍然不是一件容易的事。它是一种很好地强调连接算法的连接类型。时间截至sqldf:0.4.11dplyr:0.7.8data.table:1.12.0

# inner
Unit: seconds
   expr       min        lq      mean    median        uq       max neval
   base 111.66266 111.66266 111.66266 111.66266 111.66266 111.66266     1
  sqldf 624.88388 624.88388 624.88388 624.88388 624.88388 624.88388     1
  dplyr  51.91233  51.91233  51.91233  51.91233  51.91233  51.91233     1
     DT  10.40552  10.40552  10.40552  10.40552  10.40552  10.40552     1
# left
Unit: seconds
   expr        min         lq       mean     median         uq        max 
   base 142.782030 142.782030 142.782030 142.782030 142.782030 142.782030     
  sqldf 613.917109 613.917109 613.917109 613.917109 613.917109 613.917109     
  dplyr  49.711912  49.711912  49.711912  49.711912  49.711912  49.711912     
     DT   9.674348   9.674348   9.674348   9.674348   9.674348   9.674348       
# right
Unit: seconds
   expr        min         lq       mean     median         uq        max
   base 122.366301 122.366301 122.366301 122.366301 122.366301 122.366301     
  sqldf 611.119157 611.119157 611.119157 611.119157 611.119157 611.119157     
  dplyr  50.384841  50.384841  50.384841  50.384841  50.384841  50.384841     
     DT   9.899145   9.899145   9.899145   9.899145   9.899145   9.899145     
# full
Unit: seconds
  expr       min        lq      mean    median        uq       max neval
  base 141.79464 141.79464 141.79464 141.79464 141.79464 141.79464     1
 dplyr  94.66436  94.66436  94.66436  94.66436  94.66436  94.66436     1
    DT  21.62573  21.62573  21.62573  21.62573  21.62573  21.62573     1

请注意,您可以使用 data.table 执行其他类型的连接: - update on join - 如果你想从另一个表中查找值到你的主表 - aggregate on join - 如果你想聚合你正在加入的键,你不必实现所有的加入结果 - overlapping join - 如果你想按范围合并 - rolling join - 如果您希望合并能够通过向前或向后滚动来匹配前/后行中的值 - non-equi join - 如果你的加入条件不相等

要重现的代码:

library(microbenchmark)
library(sqldf)
library(dplyr)
library(data.table)
sapply(c("sqldf","dplyr","data.table"), packageVersion, simplify=FALSE)

n = 5e7
set.seed(108)
df1 = data.frame(x=sample(n,n-1L), y1=rnorm(n-1L))
df2 = data.frame(x=sample(n,n-1L), y2=rnorm(n-1L))
dt1 = as.data.table(df1)
dt2 = as.data.table(df2)

mb = list()
# inner join
microbenchmark(times = 1L,
               base = merge(df1, df2, by = "x"),
               sqldf = sqldf("SELECT * FROM df1 INNER JOIN df2 ON df1.x = df2.x"),
               dplyr = inner_join(df1, df2, by = "x"),
               DT = dt1[dt2, nomatch=NULL, on = "x"]) -> mb$inner

# left outer join
microbenchmark(times = 1L,
               base = merge(df1, df2, by = "x", all.x = TRUE),
               sqldf = sqldf("SELECT * FROM df1 LEFT OUTER JOIN df2 ON df1.x = df2.x"),
               dplyr = left_join(df1, df2, by = c("x"="x")),
               DT = dt2[dt1, on = "x"]) -> mb$left

# right outer join
microbenchmark(times = 1L,
               base = merge(df1, df2, by = "x", all.y = TRUE),
               sqldf = sqldf("SELECT * FROM df2 LEFT OUTER JOIN df1 ON df2.x = df1.x"),
               dplyr = right_join(df1, df2, by = "x"),
               DT = dt1[dt2, on = "x"]) -> mb$right

# full outer join
microbenchmark(times = 1L,
               base = merge(df1, df2, by = "x", all = TRUE),
               dplyr = full_join(df1, df2, by = "x"),
               DT = merge(dt1, dt2, by = "x", all = TRUE)) -> mb$full

lapply(mb, print) -> nul

【讨论】:

是否值得添加一个示例来展示如何在on = 中使用不同的列名? @Symbolix 我们可能会等待 1.9.8 版本,因为它将向on arg 添加非等连接运算符 另一个想法;值得添加注意的是merge.data.table 有默认的sort = TRUE 参数,它在合并期间添加一个键并将其保留在结果中。这是需要注意的事情,尤其是当您试图避免设置键时。 我很惊讶没有人提到如果有重复,大多数这些都不起作用...... @statquant 您可以使用data.table 进行笛卡尔连接,您是什么意思?能不能说的具体点。【参考方案11】:

对于具有0..*:0..1 基数的左连接或具有0..1:0..* 基数的右连接的情况,可以将连接器(0..1 表)中的单边列直接分配到joinee(0..* 表),从而避免创建一个全新的数据表。这需要将加入者的键列匹配到加入者中,并为分配相应地对加入者的行进行索引+排序。

如果键是单个列,那么我们可以使用对match() 的单个调用来进行匹配。这就是我将在此答案中介绍的情况。

这是一个基于 OP 的示例,除了我在df2 中添加了一个额外的行,id 为 7,以测试连接器中不匹配键的情况。这实际上是df1 left join df2:

df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L)));
df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas'));
df1[names(df2)[-1L]] <- df2[match(df1[,1L],df2[,1L]),-1L];
df1;
##   CustomerId Product   State
## 1          1 Toaster    <NA>
## 2          2 Toaster Alabama
## 3          3 Toaster    <NA>
## 4          4   Radio Alabama
## 5          5   Radio    <NA>
## 6          6   Radio    Ohio

在上面我硬编码了一个假设,即键列是两个输入表的第一列。我认为,总的来说,这不是一个不合理的假设,因为,如果你有一个带有关键列的 data.frame,如果它没有被设置为 data.frame 的第一列,那就太奇怪了一开始。您可以随时重新排序列以使其如此。这种假设的一个有利结果是键列的名称不必是硬编码的,尽管我认为它只是用另一个假设替换了一个假设。简洁是整数索引的另一个优点,也是速度。在下面的基准测试中,我将更改实现以使用字符串名称索引来匹配竞争实现。

我认为,如果您有多个表要针对单个大表进行左连接,那么这是一个特别合适的解决方案。为每次合并重复重建整个表是不必要且低效的。

另一方面,如果您出于某种原因需要通过此操作保持被加入者保持不变,则无法使用此解决方案,因为它直接修改了被加入者。虽然在这种情况下,您可以简单地制作副本并在副本上执行就地分配。


作为旁注,我简要研究了多列键的可能匹配解决方案。不幸的是,我找到的唯一匹配解决方案是:

低效的串联。例如match(interaction(df1$a,df1$b),interaction(df2$a,df2$b)),或与paste() 相同的想法。 低效的笛卡尔连词,例如outer(df1$a,df2$a,`==`) &amp; outer(df1$b,df2$b,`==`)。 base R merge() 和等效的基于包的合并函数,它们总是分配一个新表来返回合并结果,因此不适合基于就地分配的解决方案。

例如,请参阅Matching multiple columns on different data frames and getting other column as result、match two columns with two other columns、Matching on multiple columns,以及我最初提出就地解决方案的这个问题,Combine two data frames with different number of rows in R。


基准测试

我决定进行自己的基准测试,以了解就地分配方法与此问题中提供的其他解决方案相比如何。

测试代码:

library(microbenchmark);
library(data.table);
library(sqldf);
library(plyr);
library(dplyr);

solSpecs <- list(
    merge=list(testFuncs=list(
        inner=function(df1,df2,key) merge(df1,df2,key),
        left =function(df1,df2,key) merge(df1,df2,key,all.x=T),
        right=function(df1,df2,key) merge(df1,df2,key,all.y=T),
        full =function(df1,df2,key) merge(df1,df2,key,all=T)
    )),
    data.table.unkeyed=list(argSpec='data.table.unkeyed',testFuncs=list(
        inner=function(dt1,dt2,key) dt1[dt2,on=key,nomatch=0L,allow.cartesian=T],
        left =function(dt1,dt2,key) dt2[dt1,on=key,allow.cartesian=T],
        right=function(dt1,dt2,key) dt1[dt2,on=key,allow.cartesian=T],
        full =function(dt1,dt2,key) merge(dt1,dt2,key,all=T,allow.cartesian=T) ## calls merge.data.table()
    )),
    data.table.keyed=list(argSpec='data.table.keyed',testFuncs=list(
        inner=function(dt1,dt2) dt1[dt2,nomatch=0L,allow.cartesian=T],
        left =function(dt1,dt2) dt2[dt1,allow.cartesian=T],
        right=function(dt1,dt2) dt1[dt2,allow.cartesian=T],
        full =function(dt1,dt2) merge(dt1,dt2,all=T,allow.cartesian=T) ## calls merge.data.table()
    )),
    sqldf.unindexed=list(testFuncs=list( ## note: must pass connection=NULL to avoid running against the live DB connection, which would result in collisions with the residual tables from the last query upload
        inner=function(df1,df2,key) sqldf(paste0('select * from df1 inner join df2 using(',paste(collapse=',',key),')'),connection=NULL),
        left =function(df1,df2,key) sqldf(paste0('select * from df1 left join df2 using(',paste(collapse=',',key),')'),connection=NULL),
        right=function(df1,df2,key) sqldf(paste0('select * from df2 left join df1 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do right join proper, not yet supported; inverted left join is equivalent
        ##full =function(df1,df2,key) sqldf(paste0('select * from df1 full join df2 using(',paste(collapse=',',key),')'),connection=NULL) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
    )),
    sqldf.indexed=list(testFuncs=list( ## important: requires an active DB connection with preindexed main.df1 and main.df2 ready to go; arguments are actually ignored
        inner=function(df1,df2,key) sqldf(paste0('select * from main.df1 inner join main.df2 using(',paste(collapse=',',key),')')),
        left =function(df1,df2,key) sqldf(paste0('select * from main.df1 left join main.df2 using(',paste(collapse=',',key),')')),
        right=function(df1,df2,key) sqldf(paste0('select * from main.df2 left join main.df1 using(',paste(collapse=',',key),')')) ## can't do right join proper, not yet supported; inverted left join is equivalent
        ##full =function(df1,df2,key) sqldf(paste0('select * from main.df1 full join main.df2 using(',paste(collapse=',',key),')')) ## can't do full join proper, not yet supported; possible to hack it with a union of left joins, but too unreasonable to include in testing
    )),
    plyr=list(testFuncs=list(
        inner=function(df1,df2,key) join(df1,df2,key,'inner'),
        left =function(df1,df2,key) join(df1,df2,key,'left'),
        right=function(df1,df2,key) join(df1,df2,key,'right'),
        full =function(df1,df2,key) join(df1,df2,key,'full')
    )),
    dplyr=list(testFuncs=list(
        inner=function(df1,df2,key) inner_join(df1,df2,key),
        left =function(df1,df2,key) left_join(df1,df2,key),
        right=function(df1,df2,key) right_join(df1,df2,key),
        full =function(df1,df2,key) full_join(df1,df2,key)
    )),
    in.place=list(testFuncs=list(
        left =function(df1,df2,key)  cns <- setdiff(names(df2),key); df1[cns] <- df2[match(df1[,key],df2[,key]),cns]; df1; ,
        right=function(df1,df2,key)  cns <- setdiff(names(df1),key); df2[cns] <- df1[match(df2[,key],df1[,key]),cns]; df2; 
    ))
);

getSolTypes <- function() names(solSpecs);
getJoinTypes <- function() unique(unlist(lapply(solSpecs,function(x) names(x$testFuncs))));
getArgSpec <- function(argSpecs,key=NULL) if (is.null(key)) argSpecs$default else argSpecs[[key]];

initSqldf <- function() 
    sqldf(); ## creates sqlite connection on first run, cleans up and closes existing connection otherwise
    if (exists('sqldfInitFlag',envir=globalenv(),inherits=F) && sqldfInitFlag)  ## false only on first run
        sqldf(); ## creates a new connection
     else 
        assign('sqldfInitFlag',T,envir=globalenv()); ## set to true for the one and only time
    ; ## end if
    invisible();
; ## end initSqldf()

setUpBenchmarkCall <- function(argSpecs,joinType,solTypes=getSolTypes(),env=parent.frame()) 
    ## builds and returns a list of expressions suitable for passing to the list argument of microbenchmark(), and assigns variables to resolve symbol references in those expressions
    callExpressions <- list();
    nms <- character();
    for (solType in solTypes) 
        testFunc <- solSpecs[[solType]]$testFuncs[[joinType]];
        if (is.null(testFunc)) next; ## this join type is not defined for this solution type
        testFuncName <- paste0('tf.',solType);
        assign(testFuncName,testFunc,envir=env);
        argSpecKey <- solSpecs[[solType]]$argSpec;
        argSpec <- getArgSpec(argSpecs,argSpecKey);
        argList <- setNames(nm=names(argSpec$args),vector('list',length(argSpec$args)));
        for (i in seq_along(argSpec$args)) 
            argName <- paste0('tfa.',argSpecKey,i);
            assign(argName,argSpec$args[[i]],envir=env);
            argList[[i]] <- if (i%in%argSpec$copySpec) call('copy',as.symbol(argName)) else as.symbol(argName);
        ; ## end for
        callExpressions[[length(callExpressions)+1L]] <- do.call(call,c(list(testFuncName),argList),quote=T);
        nms[length(nms)+1L] <- solType;
    ; ## end for
    names(callExpressions) <- nms;
    callExpressions;
; ## end setUpBenchmarkCall()

harmonize <- function(res) 
    res <- as.data.frame(res); ## coerce to data.frame
    for (ci in which(sapply(res,is.factor))) res[[ci]] <- as.character(res[[ci]]); ## coerce factor columns to character
    for (ci in which(sapply(res,is.logical))) res[[ci]] <- as.integer(res[[ci]]); ## coerce logical columns to integer (works around sqldf quirk of munging logicals to integers)
    ##for (ci in which(sapply(res,inherits,'POSIXct'))) res[[ci]] <- as.double(res[[ci]]); ## coerce POSIXct columns to double (works around sqldf quirk of losing POSIXct class) ----- POSIXct doesn't work at all in sqldf.indexed
    res <- res[order(names(res))]; ## order columns
    res <- res[do.call(order,res),]; ## order rows
    res;
; ## end harmonize()

checkIdentical <- function(argSpecs,solTypes=getSolTypes()) 
    for (joinType in getJoinTypes()) 
        callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
        if (length(callExpressions)<2L) next;
        ex <- harmonize(eval(callExpressions[[1L]]));
        for (i in seq(2L,len=length(callExpressions)-1L)) 
            y <- harmonize(eval(callExpressions[[i]]));
            if (!isTRUE(all.equal(ex,y,check.attributes=F))) 
                ex <<- ex;
                y <<- y;
                solType <- names(callExpressions)[i];
                stop(paste0('non-identical: ',solType,' ',joinType,'.'));
            ; ## end if
        ; ## end for
    ; ## end for
    invisible();
; ## end checkIdentical()

testJoinType <- function(argSpecs,joinType,solTypes=getSolTypes(),metric=NULL,times=100L) 
    callExpressions <- setUpBenchmarkCall(argSpecs,joinType,solTypes);
    bm <- microbenchmark(list=callExpressions,times=times);
    if (is.null(metric)) return(bm);
    bm <- summary(bm);
    res <- setNames(nm=names(callExpressions),bm[[metric]]);
    attr(res,'unit') <- attr(bm,'unit');
    res;
; ## end testJoinType()

testAllJoinTypes <- function(argSpecs,solTypes=getSolTypes(),metric=NULL,times=100L) 
    joinTypes <- getJoinTypes();
    resList <- setNames(nm=joinTypes,lapply(joinTypes,function(joinType) testJoinType(argSpecs,joinType,solTypes,metric,times)));
    if (is.null(metric)) return(resList);
    units <- unname(unlist(lapply(resList,attr,'unit')));
    res <- do.call(data.frame,c(list(join=joinTypes),setNames(nm=solTypes,rep(list(rep(NA_real_,length(joinTypes))),length(solTypes))),list(unit=units,stringsAsFactors=F)));
    for (i in seq_along(resList)) res[i,match(names(resList[[i]]),names(res))] <- resList[[i]];
    res;
; ## end testAllJoinTypes()

testGrid <- function(makeArgSpecsFunc,sizes,overlaps,solTypes=getSolTypes(),joinTypes=getJoinTypes(),metric='median',times=100L) 

    res <- expand.grid(size=sizes,overlap=overlaps,joinType=joinTypes,stringsAsFactors=F);
    res[solTypes] <- NA_real_;
    res$unit <- NA_character_;
    for (ri in seq_len(nrow(res))) 

        size <- res$size[ri];
        overlap <- res$overlap[ri];
        joinType <- res$joinType[ri];

        argSpecs <- makeArgSpecsFunc(size,overlap);

        checkIdentical(argSpecs,solTypes);

        cur <- testJoinType(argSpecs,joinType,solTypes,metric,times);
        res[ri,match(names(cur),names(res))] <- cur;
        res$unit[ri] <- attr(cur,'unit');

    ; ## end for

    res;

; ## end testGrid()

这是基于我之前演示的 OP 的示例基准:

## OP's example, supplemented with a non-matching row in df2
argSpecs <- list(
    default=list(copySpec=1:2,args=list(
        df1 <- data.frame(CustomerId=1:6,Product=c(rep('Toaster',3L),rep('Radio',3L))),
        df2 <- data.frame(CustomerId=c(2L,4L,6L,7L),State=c(rep('Alabama',2L),'Ohio','Texas')),
        'CustomerId'
    )),
    data.table.unkeyed=list(copySpec=1:2,args=list(
        as.data.table(df1),
        as.data.table(df2),
        'CustomerId'
    )),
    data.table.keyed=list(copySpec=1:2,args=list(
        setkey(as.data.table(df1),CustomerId),
        setkey(as.data.table(df2),CustomerId)
    ))
);
## prepare sqldf
initSqldf();
sqldf('create index df1_key on df1(CustomerId);'); ## upload and create an sqlite index on df1
sqldf('create index df2_key on df2(CustomerId);'); ## upload and create an sqlite index on df2

checkIdentical(argSpecs);

testAllJoinTypes(argSpecs,metric='median');
##    join    merge data.table.unkeyed data.table.keyed sqldf.unindexed sqldf.indexed      plyr    dplyr in.place         unit
## 1 inner  644.259           861.9345          923.516        9157.752      1580.390  959.2250 270.9190       NA microseconds
## 2  left  713.539           888.0205          910.045        8820.334      1529.714  968.4195 270.9185 224.3045 microseconds
## 3 right 1221.804           909.1900          923.944        8930.668      1533.135 1063.7860 269.8495 218.1035 microseconds
## 4  full 1302.203          3107.5380         3184.729              NA            NA 1593.6475 270.7055       NA microseconds

我在这里对随机输入数据进行基准测试,尝试两个输入表之间的不同比例和不同模式的键重叠。此基准仍然限于单列整数键的情况。同样,为了确保就地解决方案适用于同一个表的左连接和右连接,所有随机测试数据都使用0..1:0..1 基数。这是通过在生成第二个 data.frame 的 key 列时对第一个 data.frame 的 key 列进行采样而不替换来实现的。

makeArgSpecs.singleIntegerKey.optionalOneToOne <- function(size,overlap) 

    com <- as.integer(size*overlap);

    argSpecs <- list(
        default=list(copySpec=1:2,args=list(
            df1 <- data.frame(id=sample(size),y1=rnorm(size),y2=rnorm(size)),
            df2 <- data.frame(id=sample(c(if (com>0L) sample(df1$id,com) else integer(),seq(size+1L,len=size-com))),y3=rnorm(size),y4=rnorm(size)),
            'id'
        )),
        data.table.unkeyed=list(copySpec=1:2,args=list(
            as.data.table(df1),
            as.data.table(df2),
            'id'
        )),
        data.table.keyed=list(copySpec=1:2,args=list(
            setkey(as.data.table(df1),id),
            setkey(as.data.table(df2),id)
        ))
    );
    ## prepare sqldf
    initSqldf();
    sqldf('create index df1_key on df1(id);'); ## upload and create an sqlite index on df1
    sqldf('create index df2_key on df2(id);'); ## upload and create an sqlite index on df2

    argSpecs;

; ## end makeArgSpecs.singleIntegerKey.optionalOneToOne()

## cross of various input sizes and key overlaps
sizes <- c(1e1L,1e3L,1e6L);
overlaps <- c(0.99,0.5,0.01);
system.time( res <- testGrid(makeArgSpecs.singleIntegerKey.optionalOneToOne,sizes,overlaps); );
##     user   system  elapsed
## 22024.65 12308.63 34493.19

我编写了一些代码来创建上述结果的对数图。我为每个重叠百分比生成了一个单独的图。它有点混乱,但我喜欢在同一个图中表示所有解决方案类型和连接类型。

我使用样条插值来显示每个解决方案/连接类型组合的平滑曲线,用单独的 pch 符号绘制。连接类型由 pch 符号捕获,使用点表示内部,左右尖括号表示左右,菱形表示完整。解决方案类型由图例所示的颜色捕获。

plotRes <- function(res,titleFunc,useFloor=F) 
    solTypes <- setdiff(names(res),c('size','overlap','joinType','unit')); ## derive from res
    normMult <- c(microseconds=1e-3,milliseconds=1); ## normalize to milliseconds
    joinTypes <- getJoinTypes();
    cols <- c(merge='purple',data.table.unkeyed='blue',data.table.keyed='#00DDDD',sqldf.unindexed='brown',sqldf.indexed='orange',plyr='red',dplyr='#00BB00',in.place='magenta');
    pchs <- list(inner=20L,left='<',right='>',full=23L);
    cexs <- c(inner=0.7,left=1,right=1,full=0.7);
    NP <- 60L;
    ord <- order(decreasing=T,colMeans(res[res$size==max(res$size),solTypes],na.rm=T));
    ymajors <- data.frame(y=c(1,1e3),label=c('1ms','1s'),stringsAsFactors=F);
    for (overlap in unique(res$overlap)) 
        x1 <- res[res$overlap==overlap,];
        x1[solTypes] <- x1[solTypes]*normMult[x1$unit]; x1$unit <- NULL;
        xlim <- c(1e1,max(x1$size));
        xticks <- 10^seq(log10(xlim[1L]),log10(xlim[2L]));
        ylim <- c(1e-1,10^((if (useFloor) floor else ceiling)(log10(max(x1[solTypes],na.rm=T))))); ## use floor() to zoom in a little more, only sqldf.unindexed will break above, but xpd=NA will keep it visible
        yticks <- 10^seq(log10(ylim[1L]),log10(ylim[2L]));
        yticks.minor <- rep(yticks[-length(yticks)],each=9L)*1:9;
        plot(NA,xlim=xlim,ylim=ylim,xaxs='i',yaxs='i',axes=F,xlab='size (rows)',ylab='time (ms)',log='xy');
        abline(v=xticks,col='lightgrey');
        abline(h=yticks.minor,col='lightgrey',lty=3L);
        abline(h=yticks,col='lightgrey');
        axis(1L,xticks,parse(text=sprintf('10^%d',as.integer(log10(xticks)))));
        axis(2L,yticks,parse(text=sprintf('10^%d',as.integer(log10(yticks)))),las=1L);
        axis(4L,ymajors$y,ymajors$label,las=1L,tick=F,cex.axis=0.7,hadj=0.5);
        for (joinType in rev(joinTypes))  ## reverse to draw full first, since it's larger and would be more obtrusive if drawn last
            x2 <- x1[x1$joinType==joinType,];
            for (solType in solTypes) 
                if (any(!is.na(x2[[solType]]))) 
                    xy <- spline(x2$size,x2[[solType]],xout=10^(seq(log10(x2$size[1L]),log10(x2$size[nrow(x2)]),len=NP)));
                    points(xy$x,xy$y,pch=pchs[[joinType]],col=cols[solType],cex=cexs[joinType],xpd=NA);
                ; ## end if
            ; ## end for
        ; ## end for
        ## custom legend
        ## due to logarithmic skew, must do all distance calcs in inches, and convert to user coords afterward
        ## the bottom-left corner of the legend will be defined in normalized figure coords, although we can convert to inches immediately
        leg.cex <- 0.7;
        leg.x.in <- grconvertX(0.275,'nfc','in');
        leg.y.in <- grconvertY(0.6,'nfc','in');
        leg.x.user <- grconvertX(leg.x.in,'in');
        leg.y.user <- grconvertY(leg.y.in,'in');
        leg.outpad.w.in <- 0.1;
        leg.outpad.h.in <- 0.1;
        leg.midpad.w.in <- 0.1;
        leg.midpad.h.in <- 0.1;
        leg.sol.w.in <- max(strwidth(solTypes,'in',leg.cex));
        leg.sol.h.in <- max(strheight(solTypes,'in',leg.cex))*1.5; ## multiplication factor for greater line height
        leg.join.w.in <- max(strheight(joinTypes,'in',leg.cex))*1.5; ## ditto
        leg.join.h.in <- max(strwidth(joinTypes,'in',leg.cex));
        leg.main.w.in <- leg.join.w.in*length(joinTypes);
        leg.main.h.in <- leg.sol.h.in*length(solTypes);
        leg.x2.user <- grconvertX(leg.x.in+leg.outpad.w.in*2+leg.main.w.in+leg.midpad.w.in+leg.sol.w.in,'in');
        leg.y2.user <- grconvertY(leg.y.in+leg.outpad.h.in*2+leg.main.h.in+leg.midpad.h.in+leg.join.h.in,'in');
        leg.cols.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.join.w.in*(0.5+seq(0L,length(joinTypes)-1L)),'in');
        leg.lines.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in-leg.sol.h.in*(0.5+seq(0L,length(solTypes)-1L)),'in');
        leg.sol.x.user <- grconvertX(leg.x.in+leg.outpad.w.in+leg.main.w.in+leg.midpad.w.in,'in');
        leg.join.y.user <- grconvertY(leg.y.in+leg.outpad.h.in+leg.main.h.in+leg.midpad.h.in,'in');
        rect(leg.x.user,leg.y.user,leg.x2.user,leg.y2.user,col='white');
        text(leg.sol.x.user,leg.lines.y.user,solTypes[ord],cex=leg.cex,pos=4L,offset=0);
        text(leg.cols.x.user,leg.join.y.user,joinTypes,cex=leg.cex,pos=4L,offset=0,srt=90); ## srt rotation applies *after* pos/offset positioning
        for (i in seq_along(joinTypes)) 
            joinType <- joinTypes[i];
            points(rep(leg.cols.x.user[i],length(solTypes)),ifelse(colSums(!is.na(x1[x1$joinType==joinType,solTypes[ord]]))==0L,NA,leg.lines.y.user),pch=pchs[[joinType]],col=cols[solTypes[ord]]);
        ; ## end for
        title(titleFunc(overlap));
        readline(sprintf('overlap %.02f',overlap));
    ; ## end for
; ## end plotRes()

titleFunc <- function(overlap) sprintf('R merge solutions: single-column integer key, 0..1:0..1 cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,T);


这是第二个大型基准测试,在关键列的数量和类型以及基数方面更加繁重。对于这个基准测试,我使用三个关键列:一个字符、一个整数和一个逻辑,对基数没有限制(即0..*:0..*)。 (一般来说,由于浮点比较的复杂性,不建议使用双精度值或复值定义键列,而且基本上没有人使用原始类型,更不用说键列了,所以我没有将这些类型包含在键中另外,为了提供信息,我最初尝试通过包含一个 POSIXct 键列来使用四个键列,但由于某种原因,POSIXct 类型不能很好地与sqldf.indexed 解决方案配合使用,可能是由于浮点比较异常,所以我删除了它。)

makeArgSpecs.assortedKey.optionalManyToMany <- function(size,overlap,uniquePct=75) 

    ## number of unique keys in df1
    u1Size <- as.integer(size*uniquePct/100);

    ## (roughly) divide u1Size into bases, so we can use expand.grid() to produce the required number of unique key values with repetitions within individual key columns
    ## use ceiling() to ensure we cover u1Size; will truncate afterward
    u1SizePerKeyColumn <- as.integer(ceiling(u1Size^(1/3)));

    ## generate the unique key values for df1
    keys1 <- expand.grid(stringsAsFactors=F,
        idCharacter=replicate(u1SizePerKeyColumn,paste(collapse='',sample(letters,sample(4:12,1L),T))),
        idInteger=sample(u1SizePerKeyColumn),
        idLogical=sample(c(F,T),u1SizePerKeyColumn,T)
        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+sample(u1SizePerKeyColumn)
    )[seq_len(u1Size),];

    ## rbind some repetitions of the unique keys; this will prepare one side of the many-to-many relationship
    ## also scramble the order afterward
    keys1 <- rbind(keys1,keys1[sample(nrow(keys1),size-u1Size,T),])[sample(size),];

    ## common and unilateral key counts
    com <- as.integer(size*overlap);
    uni <- size-com;

    ## generate some unilateral keys for df2 by synthesizing outside of the idInteger range of df1
    keys2 <- data.frame(stringsAsFactors=F,
        idCharacter=replicate(uni,paste(collapse='',sample(letters,sample(4:12,1L),T))),
        idInteger=u1SizePerKeyColumn+sample(uni),
        idLogical=sample(c(F,T),uni,T)
        ##idPOSIXct=as.POSIXct('2016-01-01 00:00:00','UTC')+u1SizePerKeyColumn+sample(uni)
    );

    ## rbind random keys from df1; this will complete the many-to-many relationship
    ## also scramble the order afterward
    keys2 <- rbind(keys2,keys1[sample(nrow(keys1),com,T),])[sample(size),];

    ##keyNames <- c('idCharacter','idInteger','idLogical','idPOSIXct');
    keyNames <- c('idCharacter','idInteger','idLogical');
    ## note: was going to use raw and complex type for two of the non-key columns, but data.table doesn't seem to fully support them
    argSpecs <- list(
        default=list(copySpec=1:2,args=list(
            df1 <- cbind(stringsAsFactors=F,keys1,y1=sample(c(F,T),size,T),y2=sample(size),y3=rnorm(size),y4=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
            df2 <- cbind(stringsAsFactors=F,keys2,y5=sample(c(F,T),size,T),y6=sample(size),y7=rnorm(size),y8=replicate(size,paste(collapse='',sample(letters,sample(4:12,1L),T)))),
            keyNames
        )),
        data.table.unkeyed=list(copySpec=1:2,args=list(
            as.data.table(df1),
            as.data.table(df2),
            keyNames
        )),
        data.table.keyed=list(copySpec=1:2,args=list(
            setkeyv(as.data.table(df1),keyNames),
            setkeyv(as.data.table(df2),keyNames)
        ))
    );
    ## prepare sqldf
    initSqldf();
    sqldf(paste0('create index df1_key on df1(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df1
    sqldf(paste0('create index df2_key on df2(',paste(collapse=',',keyNames),');')); ## upload and create an sqlite index on df2

    argSpecs;

; ## end makeArgSpecs.assortedKey.optionalManyToMany()

sizes <- c(1e1L,1e3L,1e5L); ## 1e5L instead of 1e6L to respect more heavy-duty inputs
overlaps <- c(0.99,0.5,0.01);
solTypes <- setdiff(getSolTypes(),'in.place');
system.time( res <- testGrid(makeArgSpecs.assortedKey.optionalManyToMany,sizes,overlaps,solTypes); );
##     user   system  elapsed
## 38895.50   784.19 39745.53

使用上面给出的相同绘图代码生成的绘图:

titleFunc <- function(overlap) sprintf('R merge solutions: character/integer/logical key, 0..*:0..* cardinality, %d%% overlap',as.integer(overlap*100));
plotRes(res,titleFunc,F);

【讨论】:

非常好的分析,但遗憾的是您将比例设置为从 10^1 到 10^6,这些集是如此之小以至于速度差异几乎无关紧要。 10^6 到 10^8 会很有趣! 我还发现你在基准测试中包含了类强制的时间,这使得它对加入操作无效。【参考方案12】:

对于所有列的内部连接,您还可以使用 data.table 包中的 fintersectdplyr 包中的 intersect 作为在不指定 by 列的情况下替代 merge。这将给出两个数据帧之间相等的行:

merge(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3
dplyr::intersect(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3
data.table::fintersect(setDT(df1), setDT(df2))
#    V1 V2
# 1:  B  2
# 2:  C  3

示例数据:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)

【讨论】:

【参考方案13】:

更新连接。另一个重要的 SQL 样式连接是“update join”,其中一个表中的列使用另一个表更新(或创建)。

正在修改 OP 的示例表...

sales = data.frame(
  CustomerId = c(1, 1, 1, 3, 4, 6), 
  Year = 2000:2005,
  Product = c(rep("Toaster", 3), rep("Radio", 3))
)
cust = data.frame(
  CustomerId = c(1, 1, 4, 6), 
  Year = c(2001L, 2002L, 2002L, 2002L),
  State = state.name[1:4]
)

sales
# CustomerId Year Product
#          1 2000 Toaster
#          1 2001 Toaster
#          1 2002 Toaster
#          3 2003   Radio
#          4 2004   Radio
#          6 2005   Radio

cust
# CustomerId Year    State
#          1 2001  Alabama
#          1 2002   Alaska
#          4 2002  Arizona
#          6 2002 Arkansas

假设我们想将来自cust 的客户状态添加到购买表sales,忽略年份列。使用 base R,我们可以识别匹配的行,然后将值复制过来:

sales$State <- cust$State[ match(sales$CustomerId, cust$CustomerId) ]

# CustomerId Year Product    State
#          1 2000 Toaster  Alabama
#          1 2001 Toaster  Alabama
#          1 2002 Toaster  Alabama
#          3 2003   Radio     <NA>
#          4 2004   Radio  Arizona
#          6 2005   Radio Arkansas

# cleanup for the next example
sales$State <- NULL

从这里可以看出,match 从客户表中选择第一个匹配行。


用多列更新连接。当我们只连接一个列并且对第一个匹配感到满意时,上述方法很有效。假设我们希望客户表中的测量年份与销售年份相匹配。

正如@bgoldst 的回答所提到的,matchinteraction 可能是这种情况下的一个选项。更直接地说,可以使用 data.table:

library(data.table)
setDT(sales); setDT(cust)

sales[, State := cust[sales, on=.(CustomerId, Year), x.State]]

#    CustomerId Year Product   State
# 1:          1 2000 Toaster    <NA>
# 2:          1 2001 Toaster Alabama
# 3:          1 2002 Toaster  Alaska
# 4:          3 2003   Radio    <NA>
# 5:          4 2004   Radio    <NA>
# 6:          6 2005   Radio    <NA>

# cleanup for next example
sales[, State := NULL]

滚动更新加入。 或者,我们可能希望采用最后一次找到客户的状态:

sales[, State := cust[sales, on=.(CustomerId, Year), roll=TRUE, x.State]]

#    CustomerId Year Product    State
# 1:          1 2000 Toaster     <NA>
# 2:          1 2001 Toaster  Alabama
# 3:          1 2002 Toaster   Alaska
# 4:          3 2003   Radio     <NA>
# 5:          4 2004   Radio  Arizona
# 6:          6 2005   Radio Arkansas

以上三个示例都侧重于创建/添加新列。有关更新/修改现有列的示例,请参阅 the related R FAQ。

【讨论】:

以上是关于如何加入(合并)数据框(内、外、左、右)的主要内容,如果未能解决你的问题,请参考以下文章

如何加入/合并来自 Quandl 的两个数据框?

excel每个单元格多行内加入相同的内容?

熊猫与“左”选项合并正在丢失左侧数据框中的行

左连接,右连接与内连接

MYSQL-多表查询

熊猫数据框中的内部连接/合并比左数据框提供更多的行