如何在 Tensorflow 中为预取数据集绘制混淆矩阵
Posted
技术标签:
【中文标题】如何在 Tensorflow 中为预取数据集绘制混淆矩阵【英文标题】:How to extract classes from prefetched dataset in Tensorflow for confusion matrix 【发布时间】:2021-02-13 17:34:39 【问题描述】:我试图用以下代码为我的图像分类器绘制一个混淆矩阵,但我收到一条错误消息:'PrefetchDataset' object has no attribute 'classes'
Y_pred = model.predict(validation_dataset)
y_pred = np.argmax(Y_pred, axis=1)
print('Confusion Matrix')
print(confusion_matrix(validation_dataset.classes, y_pred)) # ERROR message generated
【问题讨论】:
【参考方案1】:免责声明:这不适用于打乱的数据集。我会尽快更新这个答案。
您可以使用tf.stack
连接所有数据集值。像这样:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
为了重现性,假设您有一个数据集、一个神经网络和一个训练循环:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
现在你的模型已经拟合好了,你可以预测测试集了:
y_pred = model.predict(test_dataset)
array([[2.2177568e-05, 3.0841196e-01, 6.9156587e-01],
[4.3539176e-06, 1.2779665e-01, 8.7219906e-01],
[1.0816366e-03, 9.2667454e-01, 7.2243840e-02],
[9.9921310e-01, 7.8686583e-04, 9.8775059e-09]], dtype=float32)
这将是一个(n_samples, 3)
数组,因为我们正在处理三个类别。我们想要sklearn.metrics.confusion_matrix
的(n_samples, 1)
数组,所以取argmax:
predicted_categories = tf.argmax(y_pred, axis=1)
<tf.Tensor: shape=(30,), dtype=int64, numpy=
array([2, 2, 2, 0, 2, 2, 2, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 2, 0, 2, 1, 2,
1, 0, 2, 0, 1, 2, 1, 0], dtype=int64)>
然后,我们可以从预取数据集中获取所有 y
值:
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
[<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 2, 2, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 1, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([0, 2, 1, 1], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 0, 2], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([1, 2, 1, 0], dtype=int64)>,
<tf.Tensor: shape=(4,), dtype=int64, numpy=array([2, 0, 1, 2], dtype=int64)>,
<tf.Tensor: shape=(2,), dtype=int64, numpy=array([1, 0], dtype=int64)>]
那么,你就可以得到混淆矩阵了:
confusion_matrix(predicted_categories, true_categories)
array([[ 9, 0, 0],
[ 0, 9, 0],
[ 0, 2, 10]], dtype=int64)
(9 + 9 + 10) / 30 = 0.933
是准确度得分。对应model.evaluate(test_dataset)
:
8/8 [==============================] - 0s 785us/step - loss: 0.1907 - accuracy: 0.9333
结果也和sklearn.metrics.classification_report
一致:
precision recall f1-score support
0 1.00 1.00 1.00 8
1 0.82 1.00 0.90 9
2 1.00 0.85 0.92 13
accuracy 0.93 30
macro avg 0.94 0.95 0.94 30
weighted avg 0.95 0.93 0.93 30
这是完整的代码:
import tensorflow_datasets as tfds
import tensorflow as tf
from sklearn.metrics import confusion_matrix
data, info = tfds.load('iris', split='train',
as_supervised=True,
shuffle_files=True,
with_info=True)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_dataset = data.take(120).batch(4).prefetch(buffer_size=AUTOTUNE)
test_dataset = data.skip(120).take(30).batch(4).prefetch(buffer_size=AUTOTUNE)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, activation='relu'),
tf.keras.layers.Dense(16, activation='relu'),
tf.keras.layers.Dense(info.features['label'].num_classes, activation='softmax')
])
model.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
metrics='accuracy')
history = model.fit(train_dataset, validation_data=test_dataset, epochs=50, verbose=0)
y_pred = model.predict(test_dataset)
predicted_categories = tf.argmax(y_pred, axis=1)
true_categories = tf.concat([y for x, y in test_dataset], axis=0)
confusion_matrix(predicted_categories, true_categories)
【讨论】:
@Nicholas Sir,谢谢,它可以工作,但没有按预期工作... model.evaluate() 返回的准确度为 0.82,而分类报告中的准确度为 0.20,使用与你提到... 什么是分类报告?请参阅我的更新答案。它确实对应于model.evaluate()
的结果。
只是为了确保,您知道mode.evaluate()
返回(loss, accuracy)
对吗?
没有随机播放它按预期工作。但是使用随机播放,例如train_dataset = data.take(120).shuffle(120).batch(4).prefetch(buffer_size=AUTOTUNE)
混淆矩阵的结果变得奇怪(接近随机),而训练的准确率和损失是正常的。
@shahryar 很有道理,有机会我会更新答案【参考方案2】:
此代码适用于打乱的 tf.data.Dataset
y_pred = [] # store predicted labels
y_true = [] # store true labels
# iterate over the dataset
for image_batch, label_batch in dataset: # use dataset.unbatch() with repeat
# append true labels
y_true.append(label_batch)
# compute predictions
preds = model.predict(image_batch)
# append predicted labels
y_pred.append(np.argmax(preds, axis = - 1))
# convert the true and predicted labels into tensors
correct_labels = tf.concat([item for item in y_true], axis = 0)
predicted_labels = tf.concat([item for item in y_pred], axis = 0)
【讨论】:
这段代码在洗牌后的 image_dataset_from_directory 数据集上运行良好,但得到更多选票的答案并不是因为洗牌。非常感谢。 这可以更好地处理image_dataset_from_directory
执行的洗牌。谢谢!
这是正确的答案,因为要处理随机播放。以上是关于如何在 Tensorflow 中为预取数据集绘制混淆矩阵的主要内容,如果未能解决你的问题,请参考以下文章
在 Tensorflow 中为输入和输出保持相同的数据集扩充