Pandas Dataframe 错误'StringArray 需要一系列字符串或 pandas.NA'
Posted
技术标签:
【中文标题】Pandas Dataframe 错误\'StringArray 需要一系列字符串或 pandas.NA\'【英文标题】:Pandas Dataframe Error 'StringArray requires a sequence of strings or pandas.NA'Pandas Dataframe 错误'StringArray 需要一系列字符串或 pandas.NA' 【发布时间】:2020-06-05 06:09:46 【问题描述】:过去一个月我一直在阅读 Excel 表格,使用 Pandas 没有问题。
虽然最近我更改了我的日期格式(现在已切换回原来的格式 mm/dd/yyyy)。
突然间,当我尝试读取我的 .xlsm 时,Pandas 会抛出一个错误
以下是完整的错误
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-5-655581a0eaab> in <module>
----> 1 inv = p.read(r'C:\Users\Jake\OneDrive\Documents\Eastern\Inventory\Inventory_Log.xlsm')
~\Anaconda3\lib\site-packages\pyinv\__init__.py in read(filepath)
36 'Cert_Expire':'string',
37 'Rating':'string',
---> 38 'Notes':'string'
39 )
40 amount = inv.Item.count()
~\Anaconda3\lib\site-packages\pandas\io\excel\_base.py in read_excel(io, sheet_name, header, names, index_col, usecols, squeeze, dtype, engine, converters, true_values, false_values, skiprows, nrows, na_values, keep_default_na, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
332 convert_float=convert_float,
333 mangle_dupe_cols=mangle_dupe_cols,
--> 334 **kwds,
335 )
336
~\Anaconda3\lib\site-packages\pandas\io\excel\_base.py in parse(self, sheet_name, header, names, index_col, usecols, squeeze, converters, true_values, false_values, skiprows, nrows, na_values, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
883 convert_float=convert_float,
884 mangle_dupe_cols=mangle_dupe_cols,
--> 885 **kwds,
886 )
887
~\Anaconda3\lib\site-packages\pandas\io\excel\_base.py in parse(self, sheet_name, header, names, index_col, usecols, squeeze, dtype, true_values, false_values, skiprows, nrows, na_values, verbose, parse_dates, date_parser, thousands, comment, skipfooter, convert_float, mangle_dupe_cols, **kwds)
510 )
511
--> 512 output[asheetname] = parser.read(nrows=nrows)
513
514 if not squeeze or isinstance(output[asheetname], DataFrame):
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in read(self, nrows)
1131 def read(self, nrows=None):
1132 nrows = _validate_integer("nrows", nrows)
-> 1133 ret = self._engine.read(nrows)
1134
1135 # May alter columns / col_dict
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in read(self, rows)
2462 columns, data = self._do_date_conversions(columns, data)
2463
-> 2464 data = self._convert_data(data)
2465 index, columns = self._make_index(data, alldata, columns, indexnamerow)
2466
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _convert_data(self, data)
2532 self.verbose,
2533 clean_conv,
-> 2534 clean_dtypes,
2535 )
2536
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _convert_to_ndarrays(self, dct, na_values, na_fvalues, verbose, converters, dtypes)
1725 # invalid input to is_bool_dtype
1726 pass
-> 1727 cvals = self._cast_types(cvals, cast_type, c)
1728
1729 result[c] = cvals
~\Anaconda3\lib\site-packages\pandas\io\parsers.py in _cast_types(self, values, cast_type, column)
1823 array_type = cast_type.construct_array_type()
1824 try:
-> 1825 return array_type._from_sequence_of_strings(values, dtype=cast_type)
1826 except NotImplementedError:
1827 raise NotImplementedError(
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _from_sequence_of_strings(cls, strings, dtype, copy)
199 @classmethod
200 def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
--> 201 return cls._from_sequence(strings, dtype=dtype, copy=copy)
202
203 def __arrow_array__(self, type=None):
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _from_sequence(cls, scalars, dtype, copy)
195 result[na_values] = StringDtype.na_value
196
--> 197 return cls(result)
198
199 @classmethod
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in __init__(self, values, copy)
164 self._dtype = StringDtype()
165 if not skip_validation:
--> 166 self._validate()
167
168 def _validate(self):
~\Anaconda3\lib\site-packages\pandas\core\arrays\string_.py in _validate(self)
169 """Validate that we only store NA or strings."""
170 if len(self._ndarray) and not lib.is_string_array(self._ndarray, skipna=True):
--> 171 raise ValueError("StringArray requires a sequence of strings or pandas.NA")
172 if self._ndarray.dtype != "object":
173 raise ValueError(
ValueError: StringArray requires a sequence of strings or pandas.NA
发生这种情况是因为当 pandas 读取它时,我让它将列转换为字符串 dtypes。不知道为什么日期格式会破坏这一点。
目前使用 Pandas 1.0.1
非常感谢任何信息。
如果需要,我会提供更多详细信息。
【问题讨论】:
后面的答案是否解决了您的问题?我遇到了类似的错误,但以下没有任何帮助。 我无法检查答案,因为在发布这些答案之前我已恢复为备用方式。对不起。 【参考方案1】:将日期时间列的 dtype 声明从 'col1':'string'
更改为 'col1':str
。
这种行为似乎与 pandas 1.0 的变化有关。
【讨论】:
【参考方案2】:根据文档Pandas doc:
新的df.astype()
方法可以同时使用str
和"string"
不同之处在于:"string"
会尝试转换为不能包含任何数字的 StringArray。
使用str
,它将像以前一样工作的对象类型进行处理。
【讨论】:
以上是关于Pandas Dataframe 错误'StringArray 需要一系列字符串或 pandas.NA'的主要内容,如果未能解决你的问题,请参考以下文章
从 Pandas Dataframe 错误创建 Spark DataFrame
Pandas 分析错误 AttributeError:“DataFrame”对象没有属性“profile_report”
pandas DataFrame“没有要绘制的数字数据”错误
Pandas Dataframe 错误'StringArray 需要一系列字符串或 pandas.NA'
python pandas dataframe index,错误TypeError:输入必须是可迭代的,pandas版本可能错误