如何解释 TensorFlow 输出?

Posted

技术标签:

【中文标题】如何解释 TensorFlow 输出?【英文标题】:How to interpret TensorFlow output? 【发布时间】:2016-08-18 17:42:15 【问题描述】:

如何解释 TensorFlow 输出以在 GPGPU 上构建和执行计算图?

给定以下使用 python API 执行任意 tensorflow 脚本的命令。

python3 tensorflow_test.py > 输出

第一部分stream_executor 似乎是它的加载依赖项。

I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:105] successfully opened CUDA library libcurand.so locally

什么是NUMA 节点?

I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:900] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

我假设这是它找到可用 GPU 的时候

I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties: 
name: Tesla K40c
major: 3 minor: 5 memoryClockRate (GHz) 0.745
pciBusID 0000:01:00.0
Total memory: 11.25GiB
Free memory: 11.15GiB

一些gpu初始化?什么是 DMA?

I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:755] Creating TensorFlow device (/gpu:0) -> (device: 0, name: Tesla K40c, pci bus id: 0000:01:00.0)

为什么会抛出错误E

E tensorflow/stream_executor/cuda/cuda_driver.cc:932] failed to allocate 11.15G (11976531968 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY

很好地回答了pool_allocator 所做的事情:https://***.com/a/35166985/4233809

I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 3160 get requests, put_count=2958 evicted_count=1000 eviction_rate=0.338066 and unsatisfied allocation rate=0.412025
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 1743 get requests, put_count=1970 evicted_count=1000 eviction_rate=0.507614 and unsatisfied allocation rate=0.456684
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 256 to 281
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 1986 get requests, put_count=2519 evicted_count=1000 eviction_rate=0.396983 and unsatisfied allocation rate=0.264854
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 655 to 720
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 28728 get requests, put_count=28680 evicted_count=1000 eviction_rate=0.0348675 and unsatisfied allocation rate=0.0418407
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 1694 to 1863

【问题讨论】:

【参考方案1】:

关于 NUMA -- https://software.intel.com/en-us/articles/optimizing-applications-for-numa

粗略地说,如果您有双路 CPU,它们将各自拥有自己的内存,并且必须通过较慢的 QPI 链接访问其他处理器的内存。所以每个CPU+内存都是一个NUMA节点。

您可能会将两个不同的 NUMA 节点视为两个不同的设备,并构建您的网络以针对不同的节点内/节点间带宽进行优化

但是,我认为目前 TF 中没有足够的布线来执行此操作。检测也不起作用——我只是在一台有 2 个 NUMA 节点的机器上尝试过,它仍然打印相同的消息并初始化为 1 个 NUMA 节点。

DMA = 直接内存访问。您可以在不使用 CPU(即通过 NVlink)的情况下将内容从一个 GPU 复制到另一个 GPU。 NVLink 集成尚未实现。

就错误而言,TensorFlow 尝试分配接近 GPU 最大内存,所以听起来您的一些 GPU 内存已经分配给其他东西,并且分配失败。

您可以执行以下操作以避免分配太多内存

config = tf.ConfigProto(log_device_placement=True)
config.gpu_options.per_process_gpu_memory_fraction=0.3 # don't hog all vRAM
config.operation_timeout_in_ms=15000   # terminate on long hangs
sess = tf.InteractiveSession("", config=config)

【讨论】:

【参考方案2】: successfully opened CUDA library xxx locally 表示该库已加载,但不表示会使用。 successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero 表示您的内核不支持 NUMA。您可以阅读 NUMA here 和 here。 Found device 0 with properties: 你有 1 个可以使用的 GPU。它列出了此 GPU 的属性。 DMA 是直接内存访问。有关Wikipedia 的更多信息。 failed to allocate 11.15G 错误清楚地解释了为什么会发生这种情况,但不看代码就很难说出为什么需要这么多内存。 池分配器消息在this answer 中解释

【讨论】:

"表示你的内核不支持NUMA"...这是否意味着性能会受到影响?

以上是关于如何解释 TensorFlow 输出?的主要内容,如果未能解决你的问题,请参考以下文章

TensorFlow中numpy与tensor数据相互转化

如何理解TensorFlow中的tensor

如何解释 TensorFlow 输出?

如何在tensorflow中判断tensor(张量)的值

TensorFlow:TypeError:不允许使用 `tf.Tensor` 作为 Python `bool`

tensorflow 中 feed的用法