Python:证明 NumPy 数组的合理性
Posted
技术标签:
【中文标题】Python:证明 NumPy 数组的合理性【英文标题】:Python: Justifying NumPy array 【发布时间】:2017-11-17 09:35:04 【问题描述】:请我对Python
有点陌生,这很好,我可以评论说 python 非常性感,直到我需要移动一个 4x4 矩阵的内容,我想用它来构建一个 2048 游戏演示游戏是here我有这个功能
def cover_left(matrix):
new=[[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
for i in range(4):
count=0
for j in range(4):
if mat[i][j]!=0:
new[i][count]=mat[i][j]
count+=1
return new
如果你这样称呼它,这就是这个函数的作用
cover_left([
[1,0,2,0],
[3,0,4,0],
[5,0,6,0],
[0,7,0,8]
])
它将覆盖左侧的零并产生
[ [1, 2, 0, 0],
[3, 4, 0, 0],
[5, 6, 0, 0],
[7, 8, 0, 0]]
请我需要有人帮助我以numpy
的方式执行此操作,我相信这会更快并且需要更少的代码(我在深度优先搜索算法中使用),更重要的是cover_up
的实现、cover_down
和 cover_left
。
`cover_up`
[ [1, 7, 2, 8],
[3, 0, 4, 0],
[5, 0, 6, 0],
[0, 0, 0, 0]]
`cover_down`
[ [0, 0, 0, 0],
[1, 0, 2, 0],
[3, 0, 4, 0],
[5, 7, 6, 8]]
`cover_right`
[ [0, 0, 1, 2],
[0, 0, 3, 4],
[0, 0, 5, 6],
[0, 0, 7, 8]]
【问题讨论】:
【参考方案1】:这是一种受this other post
启发的矢量化方法,并泛化为涵盖所有四个方向的non-zeros
-
def justify(a, invalid_val=0, axis=1, side='left'):
"""
Justifies a 2D array
Parameters
----------
A : ndarray
Input array to be justified
axis : int
Axis along which justification is to be made
side : str
Direction of justification. It could be 'left', 'right', 'up', 'down'
It should be 'left' or 'right' for axis=1 and 'up' or 'down' for axis=0.
"""
if invalid_val is np.nan:
mask = ~np.isnan(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if (side=='up') | (side=='left'):
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val)
if axis==1:
out[justified_mask] = a[mask]
else:
out.T[justified_mask.T] = a.T[mask.T]
return out
示例运行 -
In [473]: a # input array
Out[473]:
array([[1, 0, 2, 0],
[3, 0, 4, 0],
[5, 0, 6, 0],
[6, 7, 0, 8]])
In [474]: justify(a, axis=0, side='up')
Out[474]:
array([[1, 7, 2, 8],
[3, 0, 4, 0],
[5, 0, 6, 0],
[6, 0, 0, 0]])
In [475]: justify(a, axis=0, side='down')
Out[475]:
array([[1, 0, 0, 0],
[3, 0, 2, 0],
[5, 0, 4, 0],
[6, 7, 6, 8]])
In [476]: justify(a, axis=1, side='left')
Out[476]:
array([[1, 2, 0, 0],
[3, 4, 0, 0],
[5, 6, 0, 0],
[6, 7, 8, 0]])
In [477]: justify(a, axis=1, side='right')
Out[477]:
array([[0, 0, 1, 2],
[0, 0, 3, 4],
[0, 0, 5, 6],
[0, 6, 7, 8]])
通用案例(ndarray)
对于一个 ndarray,我们可以将其修改为 -
def justify_nd(a, invalid_val, axis, side):
"""
Justify ndarray for the valid elements (that are not invalid_val).
Parameters
----------
A : ndarray
Input array to be justified
invalid_val : scalar
invalid value
axis : int
Axis along which justification is to be made
side : str
Direction of justification. Must be 'front' or 'end'.
So, with 'front', valid elements are pushed to the front and
with 'end' valid elements are pushed to the end along specified axis.
"""
pushax = lambda a: np.moveaxis(a, axis, -1)
if invalid_val is np.nan:
mask = ~np.isnan(a)
else:
mask = a!=invalid_val
justified_mask = np.sort(mask,axis=axis)
if side=='front':
justified_mask = np.flip(justified_mask,axis=axis)
out = np.full(a.shape, invalid_val)
if (axis==-1) or (axis==a.ndim-1):
out[justified_mask] = a[mask]
else:
pushax(out)[pushax(justified_mask)] = pushax(a)[pushax(mask)]
return out
示例运行 -
输入数组:
In [87]: a
Out[87]:
array([[[54, 57, 0, 77],
[77, 0, 0, 31],
[46, 0, 0, 98],
[98, 22, 68, 75]],
[[49, 0, 0, 98],
[ 0, 47, 0, 87],
[82, 19, 0, 90],
[79, 89, 57, 74]],
[[ 0, 0, 0, 0],
[29, 0, 0, 49],
[42, 75, 0, 67],
[42, 41, 84, 33]],
[[ 0, 0, 0, 38],
[44, 10, 0, 0],
[63, 0, 0, 0],
[89, 14, 0, 0]]])
致'front'
,沿axis =0
:
In [88]: justify_nd(a, invalid_val=0, axis=0, side='front')
Out[88]:
array([[[54, 57, 0, 77],
[77, 47, 0, 31],
[46, 19, 0, 98],
[98, 22, 68, 75]],
[[49, 0, 0, 98],
[29, 10, 0, 87],
[82, 75, 0, 90],
[79, 89, 57, 74]],
[[ 0, 0, 0, 38],
[44, 0, 0, 49],
[42, 0, 0, 67],
[42, 41, 84, 33]],
[[ 0, 0, 0, 0],
[ 0, 0, 0, 0],
[63, 0, 0, 0],
[89, 14, 0, 0]]])
沿着axis=1
:
In [89]: justify_nd(a, invalid_val=0, axis=1, side='front')
Out[89]:
array([[[54, 57, 68, 77],
[77, 22, 0, 31],
[46, 0, 0, 98],
[98, 0, 0, 75]],
[[49, 47, 57, 98],
[82, 19, 0, 87],
[79, 89, 0, 90],
[ 0, 0, 0, 74]],
[[29, 75, 84, 49],
[42, 41, 0, 67],
[42, 0, 0, 33],
[ 0, 0, 0, 0]],
[[44, 10, 0, 38],
[63, 14, 0, 0],
[89, 0, 0, 0],
[ 0, 0, 0, 0]]])
沿着axis=2
:
In [90]: justify_nd(a, invalid_val=0, axis=2, side='front')
Out[90]:
array([[[54, 57, 77, 0],
[77, 31, 0, 0],
[46, 98, 0, 0],
[98, 22, 68, 75]],
[[49, 98, 0, 0],
[47, 87, 0, 0],
[82, 19, 90, 0],
[79, 89, 57, 74]],
[[ 0, 0, 0, 0],
[29, 49, 0, 0],
[42, 75, 67, 0],
[42, 41, 84, 33]],
[[38, 0, 0, 0],
[44, 10, 0, 0],
[63, 0, 0, 0],
[89, 14, 0, 0]]])
致'end'
:
In [94]: justify_nd(a, invalid_val=0, axis=2, side='end')
Out[94]:
array([[[ 0, 54, 57, 77],
[ 0, 0, 77, 31],
[ 0, 0, 46, 98],
[98, 22, 68, 75]],
[[ 0, 0, 49, 98],
[ 0, 0, 47, 87],
[ 0, 82, 19, 90],
[79, 89, 57, 74]],
[[ 0, 0, 0, 0],
[ 0, 0, 29, 49],
[ 0, 42, 75, 67],
[42, 41, 84, 33]],
[[ 0, 0, 0, 38],
[ 0, 0, 44, 10],
[ 0, 0, 0, 63],
[ 0, 0, 89, 14]]])
【讨论】:
是否可以在不调用 np.sort 的情况下执行此操作,这会减慢运行时间 @qwertylpc 你的输入数组的实际形状是什么? 数组动态改变行,在 2-7 之间(99.99% 的时间),但有 100,000 列。我只需要你写的 up justify 函数。 在github上为此提交了票 这个可以适配字符串值数组吗?实际的字母,而不是存储为字符串的数字。【参考方案2】:感谢这一切是我后来使用的
def justify(a, direction):
mask = a>0
justified_mask = numpy.sort(mask,0) if direction == 'up' or direction =='down' else numpy.sort(mask, 1)
if direction == 'up':
justified_mask = justified_mask[::-1]
if direction =='left':
justified_mask = justified_mask[:,::-1]
if direction =='right':
justified_mask = justified_mask[::-1, :]
out = numpy.zeros_like(a)
out.T[justified_mask.T] = a.T[mask.T]
return out
【讨论】:
这与other post
基本相同,只是你有四个条件语句。这里有什么新东西?
签名不一样,而且他修改了答案……以前不是这样的
什么签名?一个输入参数有四个输入选项,因此有四个条件语句。另一篇文章有两个输入参数的两个输入选项。基本相同。
在您发布此帖子之前,另一篇帖子已在 12 分钟后进行了这些修改。以上是关于Python:证明 NumPy 数组的合理性的主要内容,如果未能解决你的问题,请参考以下文章