带有资源句柄的 TensorFlow 自定义 C++ 操作
Posted
技术标签:
【中文标题】带有资源句柄的 TensorFlow 自定义 C++ 操作【英文标题】:TensorFlow custom C++ op with resource handle 【发布时间】:2019-11-08 22:29:42 【问题描述】:Python 代码:
import os
import sys
from subprocess import check_call
import tensorflow as tf
CC_NAME = "tf-resource-op.cc"
SO_NAME = "tf-resource-op.so"
def compile_so():
use_cxx11_abi = hasattr(tf, 'CXX11_ABI_FLAG') and tf.CXX11_ABI_FLAG
common_opts = ["-shared", "-O2"]
common_opts += ["-std=c++11"]
if sys.platform == "darwin":
common_opts += ["-undefined", "dynamic_lookup"]
tf_include = tf.sysconfig.get_include() # e.g. "...python2.7/site-packages/tensorflow/include"
tf_include_nsync = tf_include + "/external/nsync/public" # https://github.com/tensorflow/tensorflow/issues/2412
include_paths = [tf_include, tf_include_nsync]
for include_path in include_paths:
common_opts += ["-I", include_path]
common_opts += ["-fPIC", "-v"]
common_opts += ["-D_GLIBCXX_USE_CXX11_ABI=%i" % (1 if use_cxx11_abi else 0)]
common_opts += ["-g"]
opts = common_opts + [CC_NAME, "-o", SO_NAME]
ld_flags = ["-L%s" % tf.sysconfig.get_lib(), "-ltensorflow_framework"]
opts += ld_flags
cmd_bin = "g++"
cmd_args = [cmd_bin] + opts
print("$ %s" % " ".join(cmd_args))
check_call(cmd_args)
def main():
if not os.path.exists(SO_NAME):
compile_so()
mod = tf.load_op_library(SO_NAME)
handle = mod.open_fst_load(filename="foo.bar")
new_states, scores = mod.open_fst_transition(handle=handle, inputs=[0], states=[0])
with tf.Session() as session:
# InternalError: ndarray was 1 bytes but TF_Tensor was 98 bytes
# print("fst:", session.run(handle))
out_new_states, out_scores = session.run((new_states, scores))
print("output new states:", out_new_states)
print("output scores:", out_scores)
# When session unloads, crashes with assertion:
# F .../site-packages/tensorflow/include/tensorflow/core/lib/core/refcount.h:79] Check failed: ref_.load() == 0 (1 vs. 0) # nopep8
if __name__ == '__main__':
import better_exchook
better_exchook.install()
main()
C++ 代码:
#include <exception>
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/resource_mgr.h"
#include "tensorflow/core/framework/resource_op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/platform/macros.h"
#include "tensorflow/core/platform/mutex.h"
#include "tensorflow/core/platform/types.h"
using namespace tensorflow;
REGISTER_OP("OpenFstLoad")
.Attr("filename: string")
.Attr("container: string = ''")
.Attr("shared_name: string = ''")
.Output("handle: resource")
.SetIsStateful()
.SetShapeFn(shape_inference::ScalarShape)
.Doc("OpenFstLoad: loads FST, creates TF resource, persistent across runs in the session");
REGISTER_OP("OpenFstTransition")
.Input("handle: resource")
.Input("states: int32")
.Input("inputs: int32")
.Output("new_states: int32")
.Output("scores: float32")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c)
c->set_output(0, c->input(1));
c->set_output(1, c->input(1));
return Status::OK();
)
.Doc("OpenFstTransition: performs a transition");
struct OpenFstInstance : public ResourceBase
explicit OpenFstInstance(const string& filename) : filename_(filename)
string DebugString() override
return strings::StrCat("OpenFstInstance[", filename_, "]");
const string filename_;
;
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/resource_op_kernel.h
// TFUtil.TFArrayContainer
class OpenFstLoadOp : public ResourceOpKernel<OpenFstInstance>
public:
explicit OpenFstLoadOp(OpKernelConstruction* context)
: ResourceOpKernel(context)
OP_REQUIRES_OK(context, context->GetAttr("filename", &filename_));
private:
virtual bool IsCancellable() const return false;
virtual void Cancel()
Status CreateResource(OpenFstInstance** ret) override EXCLUSIVE_LOCKS_REQUIRED(mu_)
try
*ret = new OpenFstInstance(filename_);
catch (std::exception& exc)
return errors::Internal("Could not load OpenFst ", filename_, ", exception: ", exc.what());
if(*ret == nullptr)
return errors::ResourceExhausted("Failed to allocate");
return Status::OK();
Status VerifyResource(OpenFstInstance* fst) override
if(fst->filename_ != filename_)
return errors::InvalidArgument("Filename mismatch: expected ", filename_,
" but got ", fst->filename_, ".");
return Status::OK();
string filename_;
;
REGISTER_KERNEL_BUILDER(Name("OpenFstLoad").Device(DEVICE_CPU), OpenFstLoadOp);
class OpenFstTransitionOp : public OpKernel
public:
using OpKernel::OpKernel;
void Compute(OpKernelContext* context) override
OpenFstInstance* fst;
OP_REQUIRES_OK(context, GetResourceFromContext(context, "handle", &fst));
core::ScopedUnref unref(fst);
const Tensor& states_tensor = context->input(1);
auto states_flat = states_tensor.flat<int32>();
const Tensor& inputs_tensor = context->input(2);
auto inputs_flat = inputs_tensor.flat<int32>();
OP_REQUIRES(
context,
TensorShapeUtils::IsVector(states_tensor.shape()) &&
TensorShapeUtils::IsVector(inputs_tensor.shape()) &&
states_flat.size() == inputs_flat.size(),
errors::InvalidArgument(
"Shape mismatch. states ", states_tensor.shape().DebugString(),
" vs inputs ", inputs_tensor.shape().DebugString()));
Tensor* output_new_states_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, states_tensor.shape(), &output_new_states_tensor));
auto output_new_states_flat = output_new_states_tensor->flat<int32>();
Tensor* output_scores_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(1, states_tensor.shape(), &output_scores_tensor));
auto output_scores_flat = output_scores_tensor->flat<float>();
for(int i = 0; i < inputs_flat.size(); ++i)
output_new_states_flat(i) = -1; // TODO
output_scores_flat(i) = -1.; // TODO
;
REGISTER_KERNEL_BUILDER(Name("OpenFstTransition").Device(DEVICE_CPU), OpenFstTransitionOp);
一些问题:
运行print("fst:", session.run(handle))
会引发异常InternalError: ndarray was 1 bytes but TF_Tensor was 98 bytes
。为什么?什么意思?
当会话卸载时,它会因断言而崩溃:
F .../site-packages/tensorflow/include/tensorflow/core/lib/core/refcount.h:79] Check failed: ref_.load() == 0 (1 vs. 0)
。
堆栈跟踪:
2 libsystem_c.dylib 0x00007fff6687d1ae abort + 127
3 libtensorflow_framework.so 0x0000000107382e70 tensorflow::internal::LogMessageFatal::~LogMessageFatal() + 32
4 libtensorflow_framework.so 0x0000000107382e80 tensorflow::internal::LogMessageFatal::~LogMessageFatal() + 16
5 tf-resource-op.so 0x0000000128093d82 tensorflow::core::RefCounted::~RefCounted() + 162
6 tf-resource-op.so 0x0000000128095e2e OpenFstInstance::~OpenFstInstance() + 46 (tf-resource-op.cc:40)
7 libtensorflow_framework.so 0x000000010726a1f3 tensorflow::ResourceMgr::DoDelete(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, unsigned long long, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) + 307
8 libtensorflow_framework.so 0x000000010726a433 tensorflow::ResourceMgr::DoDelete(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&, std::__1::type_index, std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) + 99
9 tf-resource-op.so 0x000000012809457b tensorflow::ResourceOpKernel<OpenFstInstance>::~ResourceOpKernel() + 91 (resource_op_kernel.h:60)
10 tf-resource-op.so 0x0000000128094694 OpenFstLoadOp::~OpenFstLoadOp() + 52 (tf-resource-op.cc:53)
11 libtensorflow_framework.so 0x0000000107264d4f tensorflow::OpSegment::Item::~Item() + 63
12 libtensorflow_framework.so 0x000000010726558f tensorflow::OpSegment::RemoveHold(std::__1::basic_string<char, std::__1::char_traits<char>, std::__1::allocator<char> > const&) + 303
13 _pywrap_tensorflow_internal.so 0x0000000113b7b712 tensorflow::DirectSession::~DirectSession() + 274
14 _pywrap_tensorflow_internal.so 0x0000000113b7bade tensorflow::DirectSession::~DirectSession() + 14
我猜OpenFstInstance
对象的引用计数有问题。但为什么?我该如何解决?
(相关的是this question。)
【问题讨论】:
【参考方案1】:将-DNDEBUG
添加到构建标志可以解决此问题。
此解决方法在in TF issue 17316 中进行了解释。
【讨论】:
以上是关于带有资源句柄的 TensorFlow 自定义 C++ 操作的主要内容,如果未能解决你的问题,请参考以下文章
如何为图像分割创建带有掩码的自定义图像数据集?(特别是对于 Tensorflow)
TensorFlow 2 自定义损失:“没有为任何变量提供梯度”错误
我可以仅使用根引用删除带有句柄的 Firebase 观察者吗?
如何强制 TensorFlow 在 float16 下运行?