断言失败:[Condition x == y did not hold element-wise:]
Posted
技术标签:
【中文标题】断言失败:[Condition x == y did not hold element-wise:]【英文标题】:assertion failed: [Condition x == y did not hold element-wise:] 【发布时间】:2021-01-11 10:00:03 【问题描述】:我已经为句子分类任务构建了一个带有注意力层的 BiLSTM 模型,但是我收到一个错误,即我的断言由于参数数量不匹配而失败。注意层代码在这里,错误在代码下方。
class attention(Layer):
def __init__(self, return_sequences=True):
self.return_sequences = return_sequences
super(attention,self).__init__()
def build(self, input_shape):
self.W=self.add_weight(name="att_weight", shape=(input_shape[-1],1),
initializer="normal")
self.b=self.add_weight(name="att_bias", shape=(input_shape[1],1),
initializer="zeros")
super(attention,self).build(input_shape)
def call(self, x):
e = K.tanh(K.dot(x,self.W)+self.b)
a = K.softmax(e, axis=1)
output = x*a
if self.return_sequences:
return output
return K.sum(output, axis=1)
当我训练包含注意力层的模型时,它给出了断言失败的错误。
Epoch 1/10
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
<ipython-input-45-ac310033130c> in <module>()
1 #Early stopping, Adam, dropout = 0.3, 0.5, 0.5
2 #history = model.fit(sequences_matrix, Y_train, batch_size=256, epochs=5, validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', min_delta=0.0001)])
----> 3 history = model.fit(sequences_matrix, Y_train, batch_size=32, epochs=10, validation_split=0.1)
8 frames
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
58 ctx.ensure_initialized()
59 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
---> 60 inputs, attrs, num_outputs)
61 except core._NotOkStatusException as e:
62 if name is not None:
InvalidArgumentError: assertion failed: [Condition x == y did not hold element-wise:] [x (sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/Shape_1:0) = ] [32 1] [y (sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/strided_slice:0) = ] [32 758]
[[node sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/assert_equal_1/Assert/Assert (defined at <ipython-input-45-ac310033130c>:3) ]] [Op:__inference_train_function_19854]
Function call stack:
train_function
我的模特是
model = Sequential()
model.add(Embedding(max_words, 768, input_length=max_len, weights=[embedding]))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(SpatialDropout1D(0.1))
model.add(Conv1D(16, kernel_size=11, activation='relu'))
model.add(Bidirectional(LSTM(16, return_sequences=True)))
model.add(attention(return_sequences=True))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(Dropout(0.2))
model.add(Dense(2, activation='softmax', use_bias=True, kernel_regularizer=regularizers.l1_l2(l1=1e-5, l2=1e-4), bias_regularizer=regularizers.l2(1e-4),
activity_regularizer=regularizers.l2(1e-5)))
model.summary()
Y_train 的形状是
max_words = 48369
max_len = 768
tok = Tokenizer(num_words = max_words)
tok.fit_on_texts(X_train)
sequences = tok.texts_to_sequences(X_train)
sequences_matrix = sequence.pad_sequences(sequences, maxlen = max_len)
Y_train = np.array(Y_train)
Y_test = np.array(Y_test)
print(Y_train.shape)
(43532, 1)
【问题讨论】:
报告模型(不是总结)。你的目标是什么形状 @MarcoCerliani 用模型编辑了问题。我不明白你所说的目标形状是什么意思?我的嵌入尺寸为 768*48369,总目标值为 48369(二进制分类) 目标的形状是y_train.shape...返回什么? 是(43532, 1)
【参考方案1】:
您的目标是 2D 格式,因此您需要在最后一个注意力层中设置 return_sequences=False
以便以 2D 格式返回输出
【讨论】:
以上是关于断言失败:[Condition x == y did not hold element-wise:]的主要内容,如果未能解决你的问题,请参考以下文章
INVALID_ARGUMENT:断言失败:[预测必须是 <= 1] [条件 x <= y 没有按元素保持:]