在构建和训练 3D Keras U-NET 时遇到 ValueError
Posted
技术标签:
【中文标题】在构建和训练 3D Keras U-NET 时遇到 ValueError【英文标题】:Getting a ValueError on building and training 3D Keras U-NET 【发布时间】:2020-02-25 08:38:15 【问题描述】:在训练我使用 keras 为 3D Unet 构建的模型时,我得到 ValueError:conv3d_46 层的输入 0 与该层不兼容:预期 ndim=5,发现 ndim=6。收到的完整形状:[None, 2, 256, 256, 120, 4]。我的数据的形状大小为 (2, 256, 256, 120, 4)。
型号:
data = Input(shape=inp_shape)
flt=32
conv1 = Conv3D(flt, (3, 3, 3), activation='relu', padding='same')(data)
conv1 = Conv3D(flt, (3, 3, 3), activation='relu', padding='same')(conv1)
pool1 = MaxPooling3D(pool_size=(2, 2, 2))(conv1)
conv2 = Conv3D(flt*2, (3, 3, 3), activation='relu', padding='same')(pool1)
conv2 = Conv3D(flt*2, (3, 3, 3), activation='relu', padding='same')(conv2)
pool2 = MaxPooling3D(pool_size=(2, 2, 2))(conv2)
conv3 = Conv3D(flt*4, (3, 3, 3), activation='relu', padding='same')(pool2)
conv3 = Conv3D(flt*4, (3, 3, 3), activation='relu', padding='same')(conv3)
pool3 = MaxPooling3D(pool_size=(2, 2, 2))(conv3)
conv4 = Conv3D(flt*8, (3, 3, 3), activation='relu', padding='same')(pool3)
conv4 = Conv3D(flt*8, (3, 3, 3), activation='relu', padding='same')(conv4)
pool4 = MaxPooling3D(pool_size=(2, 2, 2))(conv4)
conv5 = Conv3D(flt*16, (3, 3, 3), activation='relu', padding='same')(pool4)
conv5 = Conv3D(flt*8, (3, 3, 3), activation='relu', padding='same')(conv5)
up6 = concatenate([Conv3DTranspose(flt*8, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv5), conv4], axis=-1)
conv6 = Conv3D(flt*8, (3, 3, 3), activation='relu', padding='same')(up6)
conv6 = Conv3D(flt*4, (3, 3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv3DTranspose(flt*4, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv6), conv3], axis=-1)
conv7 = Conv3D(flt*4, (3, 3, 3), activation='relu', padding='same')(up7)
conv7 = Conv3D(flt*2, (3, 3, 3), activation='relu', padding='same')(conv7)
up8 = concatenate([Conv3DTranspose(flt*2, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv7), conv2], axis=4)
conv8 = Conv3D(flt*2, (3, 3, 3), activation='relu', padding='same')(up8)
conv8 = Conv3D(flt, (3, 3, 3), activation='relu', padding='same')(conv8)
up9 = concatenate([Conv3DTranspose(flt, (2, 2, 2), strides=(2, 2, 2), padding='same')(conv8), conv1], axis=4)
conv9 = Conv3D(flt, (3, 3, 3), activation='relu', padding='same')(up9)
conv9 = Conv3D(flt, (3, 3, 3), activation='relu', padding='same')(conv9)
conv10 = Conv3D(2, (1,1,1), activation='sigmoid')(conv9)
model = Model(inputs=[data], outputs=[conv10])
训练模型的代码如下:-
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['binary_accuracy'])
【问题讨论】:
我们需要binary_crossentropy
的损失函数用于 UNet 和 sigmoid 激活。 categorical_crossentropy
用于多类分类。
我改变了,但仍然遇到同样的错误。我认为模型有问题。我想不通。@ShubhamPanchal 任务是执行分割
目标标签的最后一维为2。模型输出的最后一维为1。可能目标标签已经过一次热编码?
@ShubhamPanchal 哦,让我编辑和测试
@ShubhamPanchal 感谢更改模型运行的二维后。
【参考方案1】:
目标标签的最后一维为 2。模型的输出的最后一维为 1。感谢@Shubham Panchal
【讨论】:
以上是关于在构建和训练 3D Keras U-NET 时遇到 ValueError的主要内容,如果未能解决你的问题,请参考以下文章
Keras深度学习实战(17)——使用U-Net架构进行图像分割