不同我层 ResNet50 和原始 ResNet50 的名称
Posted
技术标签:
【中文标题】不同我层 ResNet50 和原始 ResNet50 的名称【英文标题】:Different my name of layer ResNet50 and original ResNet50 【发布时间】:2021-08-29 10:39:11 【问题描述】:我运行此代码以将预训练的 ResNet50 与 ImageNet 一起使用:
from keras.applications import ResNet50
conv_base = ResNet50()
print(conv_base.summary())
但是,每一层的名称与原来的ResNet50(互联网访问)不同。
例如:
我的结果:(不正确)
activation_95 (Activation) (None, None, None, 5 0 bn5c_branch2a[0][0]
__________________________________________________________________________________________________
res5c_branch2b (Conv2D) (None, None, None, 5 2359808 activation_95[0][0]
__________________________________________________________________________________________________
bn5c_branch2b (BatchNormalizati (None, None, None, 5 2048 res5c_branch2b[0][0]
__________________________________________________________________________________________________
activation_96 (Activation) (None, None, None, 5 0 bn5c_branch2b[0][0]
__________________________________________________________________________________________________
res5c_branch2c (Conv2D) (None, None, None, 2 1050624 activation_96[0][0]
__________________________________________________________________________________________________
bn5c_branch2c (BatchNormalizati (None, None, None, 2 8192 res5c_branch2c[0][0]
原始结果:(正确)
conv5_block3_1_bn (BatchNormali (None, 7, 7, 512) 2048 conv5_block3_1_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_1_relu (Activation (None, 7, 7, 512) 0 conv5_block3_1_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_2_conv (Conv2D) (None, 7, 7, 512) 2359808 conv5_block3_1_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_2_bn (BatchNormali (None, 7, 7, 512) 2048 conv5_block3_2_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_2_relu (Activation (None, 7, 7, 512) 0 conv5_block3_2_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_3_conv (Conv2D) (None, 7, 7, 2048) 1050624 conv5_block3_2_relu[0][0]
__________________________________________________________________________________________________
conv5_block3_3_bn (BatchNormali (None, 7, 7, 2048) 8192 conv5_block3_3_conv[0][0]
__________________________________________________________________________________________________
conv5_block3_add (Add) (None, 7, 7, 2048) 0 conv5_block2_out[0][0]
conv5_block3_3_bn[0][0]
__________________________________________________________________________________________________
conv5_block3_out (Activation) (None, 7, 7, 2048) 0 conv5_block3_add[0][0]
安装不同版本的python但不正确!
请帮帮我。
【问题讨论】:
您的导入应该会导致错误。因为 keras.apllications 模块上不存在ResNet50
类。!!无论如何尝试from tensorflow.keras.applications import ResNet50
【参考方案1】:
我做了这一步,它更正了:
-
卸载 anacoda-navigator。
卸载所有版本的python。
从 python 网站下载并安装 python 3.7.0。
使用 Pip 安装包。
安装 Cudatoolkit 和 Cudnn (Help)
将路径添加到环境变量(Help)
非常感谢。
【讨论】:
以上是关于不同我层 ResNet50 和原始 ResNet50 的名称的主要内容,如果未能解决你的问题,请参考以下文章