在转换期间从 tensorflow 对象中提取 numpy 值
Posted
技术标签:
【中文标题】在转换期间从 tensorflow 对象中提取 numpy 值【英文标题】:extracting numpy value from tensorflow object during transformation 【发布时间】:2020-11-13 15:42:38 【问题描述】:我正在尝试使用 tensorflow 获取词嵌入,并且我已经使用我的语料库创建了相邻的工作列表。
我的词汇中唯一单词的数量为 8000,相邻单词列表的数量约为 160 万
Word Lists sample photo
由于数据非常大,我正在尝试将单词列表批量写入 TFRecords 文件。
def save_tfrecords_wordlist(toprocess_word_lists, path ):
writer = tf.io.TFRecordWriter(path)
for word_list in toprocess_word_lists:
features=tf.train.Features(
feature=
'word_list_X': tf.train.Feature( bytes_list=tf.train.BytesList(value=[word_list[0].encode('utf-8')] )),
'word_list_Y': tf.train.Feature( bytes_list=tf.train.BytesList(value=[word_list[1].encode('utf-8') ]))
)
example = tf.train.Example(features = features)
writer.write(example.SerializeToString())
writer.close()
定义批次
batches = [0,250000,500000,750000,1000000,1250000,1500000,1641790]
for i in range(len(batches) - 1 ):
batches_start = batches[i]
batches_end = batches[i + 1]
print( str(batches_start) + " -- " + str(batches_end ))
toprocess_word_lists = word_lists[batches_start:batches_end]
save_tfrecords_wordlist( toprocess_word_lists, path +"/TFRecords/data_" + str(i) +".tfrecords")
##############################
def _parse_function(example_proto):
features = "word_list_X": tf.io.FixedLenFeature((), tf.string),
"word_list_Y": tf.io.FixedLenFeature((), tf.string)
parsed_features = tf.io.parse_single_example(example_proto, features)
"""
word_list_X = parsed_features['word_list_X'].numpy()
word_list_Y = parsed_features['word_list_Y'].numpy()
## need help is getting the numpy values from parsed_features variable so that i can get the one hot encoding matrix which can be directly sent to tensorflow for training
sample word_list_X value is <tf.Tensor: shape=(10,), dtype=string, numpy=array([b'for', b'for', b'for', b'you', b'you', b'you', b'you', b'to',b'to', b'to'], dtype=object)>
sample word_list_Y value is <tf.Tensor: shape=(10,), dtype=string, numpy=array([b'is', b'to', b'recommend', b'to', b'for', b'contact', b'is',b'contact', b'you', b'the'], dtype=object)>)
"""
return parsed_features['word_list_X'],parsed_features['word_list_Y']
filenames = [ path + "/JustEat_TFRecords/data.tfrecords" ]
dataset = tf.data.TFRecordDataset(filenames)
dataset = dataset.map(_parse_function)
dataset = dataset.batch(10)
# Defining the size of the embedding
embed_size = 100
# Defining the neural network
inp = tf.keras.Input(shape=(7958,))
x = tf.keras.layers.Dense(units=embed_size, activation='linear')(inp)
x = tf.keras.layers.Dense(units=7958, activation='softmax')(x)
model = tf.keras.Model(inputs=inp, outputs=x)
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam')
# Optimizing the network weights
#model.fit( x=X, y=Y, batch_size=256,epochs= 100)
model.fit(dataset,epochs= 2)
【问题讨论】:
【参考方案1】:您似乎无法从映射函数(1、2)内部调用 .numpy() 函数,尽管我可以使用 (doc) 中的 py_function 进行管理。 H3>
在下面的示例中,我已将我解析的数据集映射到一个将我的图像转换为np.uint8
的函数,以便绘制它们使用 matplotlib。
records_path = data_directory+'TFRecords'+'/data_0.tfrecord'
# Create a dataset
dataset = tf.data.TFRecordDataset(filenames=records_path)
# Map our dataset to the parsing function
parsed_dataset = dataset.map(parsing_fn)
converted_dataset = parsed_dataset.map(lambda image,label:
tf.py_function(func=converting_function,
inp=[image,label],
Tout=[np.uint8,tf.int64]))
# Gets the iterator
iterator = tf.compat.v1.data.make_one_shot_iterator(converted_dataset)
for i in range(5):
image,label = iterator.get_next()
plt.imshow(image)
plt.show()
print('label: ', label)
输出:
解析函数:
def parsing_fn(serialized):
# Define a dict with the data-names and types we expect to
# find in the TFRecords file.
features = \
'image': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.int64)
# Parse the serialized data so we get a dict with our data.
parsed_example = tf.io.parse_single_example(serialized=serialized,
features=features)
# Get the image as raw bytes.
image_raw = parsed_example['image']
# Decode the raw bytes so it becomes a tensor with type.
image = tf.io.decode_jpeg(image_raw)
# Get the label associated with the image.
label = parsed_example['label']
# The image and label are now correct TensorFlow types.
return image, label
相关问题:TF.data.dataset.map(map_func) with Eager Mode
更新:实际上并没有检查,但 tf.shape() 似乎也是一个有前途的替代方案。
【讨论】:
感谢您的回答 Dourado,实际上我想调用 parsing_fn 中的 numpy,以便我可以使用该值进行进一步处理。而我所说的进一步处理的意思是,创建一个热矩阵并将其直接发送到张量流建模以上是关于在转换期间从 tensorflow 对象中提取 numpy 值的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow 数据对象Dataset.shuffle()repeat()batch() 等用法
Tensorflow 数据对象Dataset.shuffle()repeat()batch() 等用法