Python3并行处理opencv视频帧
Posted
技术标签:
【中文标题】Python3并行处理opencv视频帧【英文标题】:Python3 parallel process opencv video frames 【发布时间】:2018-06-18 13:46:01 【问题描述】:我有一个视频文件,我需要逐帧处理,然后需要在帧中显示结果。目前我正在按顺序进行处理并一一显示帧。
现在我想并行处理帧而不是顺序处理。一旦处理了 X 个帧,则 cv2.imshow 必须出现,并且必须以正确的顺序显示已处理的帧。
目前我的顺序代码如下所示
import cv2
import requests
def process_frame(bgr_image, jpg_as_text):
try:
# Post to api for processing and get the results
# result = requests.post("example.com", data="jpg": jpg_as_text)
# Add results to bgr_image
# cv2.putText()
except Exception as e:
print(e)
pass
# Show the frame
cv2.imshow("frame", bgr_image)
video = cv2.VideoCapture("video.mp4")
i = 0
while video.isOpened():
ret, bgr_image = video.read()
if ret == True:
img_height, img_width, _ = bgr_image.shape
jpg_as_text = cv2.imencode(".jpg", bgr_image)[1].tostring()
process_frame(bgr_image, jpg_as_text)
print(i)
i += 1
else:
break
if cv2.waitKey(1) & 0xFF == ord("q"):
break
video.release()
cv2.destroyAllWindows()
现在我应该重构什么来进行并行处理并在处理 X 帧后预览帧。
【问题讨论】:
【参考方案1】:OpenCV 在其 github 存储库中有一个多线程视频处理示例。
https://github.com/opencv/opencv/blob/master/samples/python/video_threaded.py
从 multiprocessing.pool 导入 ThreadPool 并为每个 cpu 内核启动一个新线程。 OpenCV 有一个函数叫做 getNumberOfCPUs()
例子:
from __future__ import print_function
import numpy as np
import cv2 as cv
from multiprocessing.pool import ThreadPool
from collections import deque
from common import clock, draw_str, StatValue
import video
class DummyTask:
def __init__(self, data):
self.data = data
def ready(self):
return True
def get(self):
return self.data
if __name__ == '__main__':
import sys
print(__doc__)
try:
fn = sys.argv[1]
except:
fn = 0
cap = video.create_capture(fn)
def process_frame(frame, t0):
# some intensive computation...
frame = cv.medianBlur(frame, 19)
frame = cv.medianBlur(frame, 19)
return frame, t0
threadn = cv.getNumberOfCPUs()
pool = ThreadPool(processes = threadn)
pending = deque()
threaded_mode = True
latency = StatValue()
frame_interval = StatValue()
last_frame_time = clock()
while True:
while len(pending) > 0 and pending[0].ready():
res, t0 = pending.popleft().get()
latency.update(clock() - t0)
draw_str(res, (20, 20), "threaded : " + str(threaded_mode))
draw_str(res, (20, 40), "latency : %.1f ms" % (latency.value*1000))
draw_str(res, (20, 60), "frame interval : %.1f ms" % (frame_interval.value*1000))
cv.imshow('threaded video', res)
if len(pending) < threadn:
ret, frame = cap.read()
t = clock()
frame_interval.update(t - last_frame_time)
last_frame_time = t
if threaded_mode:
task = pool.apply_async(process_frame, (frame.copy(), t))
else:
task = DummyTask(process_frame(frame, t))
pending.append(task)
ch = cv.waitKey(1)
if ch == ord(' '):
threaded_mode = not threaded_mode
if ch == 27:
break
cv.destroyAllWindows()
您应该能够使用该示例代码并将您的图像处理放在 process_frame 函数中。
在循环中添加一个计数器并在 count == X 时调用 cv2.imshow
【讨论】:
不要发布链接作为答案。如果有人在寻找答案时页面不存在怎么办?以上是关于Python3并行处理opencv视频帧的主要内容,如果未能解决你的问题,请参考以下文章