使用 Android 陀螺仪代替加速度计。我发现很多零碎的东西,但没有完整的代码
Posted
技术标签:
【中文标题】使用 Android 陀螺仪代替加速度计。我发现很多零碎的东西,但没有完整的代码【英文标题】:Using Android gyroscope instead of accelerometer. I find lots of bits and pieces, but no complete code 【发布时间】:2012-11-20 16:50:05 【问题描述】:Sensor Fusion 视频看起来很棒,但没有代码: http://www.youtube.com/watch?v=C7JQ7Rpwn2k&feature=player_detailpage#t=1315s
这是我的代码,它只使用加速度计和指南针。我还在 3 个方向值上使用了卡尔曼滤波器,但是这里显示的代码太多了。最终,这可以正常工作,但结果要么过于紧张,要么过于滞后,具体取决于我对结果的处理方式以及我将过滤因子设为多低。
/** Just accelerometer and magnetic sensors */
public abstract class SensorsListener2
implements
SensorEventListener
/** The lower this is, the greater the preference which is given to previous values. (slows change) */
private static final float accelFilteringFactor = 0.1f;
private static final float magFilteringFactor = 0.01f;
public abstract boolean getIsLandscape();
@Override
public void onSensorChanged(SensorEvent event)
Sensor sensor = event.sensor;
int type = sensor.getType();
switch (type)
case Sensor.TYPE_MAGNETIC_FIELD:
mags[0] = event.values[0] * magFilteringFactor + mags[0] * (1.0f - magFilteringFactor);
mags[1] = event.values[1] * magFilteringFactor + mags[1] * (1.0f - magFilteringFactor);
mags[2] = event.values[2] * magFilteringFactor + mags[2] * (1.0f - magFilteringFactor);
isReady = true;
break;
case Sensor.TYPE_ACCELEROMETER:
accels[0] = event.values[0] * accelFilteringFactor + accels[0] * (1.0f - accelFilteringFactor);
accels[1] = event.values[1] * accelFilteringFactor + accels[1] * (1.0f - accelFilteringFactor);
accels[2] = event.values[2] * accelFilteringFactor + accels[2] * (1.0f - accelFilteringFactor);
break;
default:
return;
if(mags != null && accels != null && isReady)
isReady = false;
SensorManager.getRotationMatrix(rot, inclination, accels, mags);
boolean isLandscape = getIsLandscape();
if(isLandscape)
outR = rot;
else
// Remap the coordinates to work in portrait mode.
SensorManager.remapCoordinateSystem(rot, SensorManager.AXIS_X, SensorManager.AXIS_Z, outR);
SensorManager.getOrientation(outR, values);
double x180pi = 180.0 / Math.PI;
float azimuth = (float)(values[0] * x180pi);
float pitch = (float)(values[1] * x180pi);
float roll = (float)(values[2] * x180pi);
// In landscape mode swap pitch and roll and invert the pitch.
if(isLandscape)
float tmp = pitch;
pitch = -roll;
roll = -tmp;
azimuth = 180 - azimuth;
else
pitch = -pitch - 90;
azimuth = 90 - azimuth;
onOrientationChanged(azimuth,pitch,roll);
private float[] mags = new float[3];
private float[] accels = new float[3];
private boolean isReady;
private float[] rot = new float[9];
private float[] outR = new float[9];
private float[] inclination = new float[9];
private float[] values = new float[3];
/**
Azimuth: angle between the magnetic north direction and the Y axis, around the Z axis (0 to 359). 0=North, 90=East, 180=South, 270=West
Pitch: rotation around X axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.
Roll: rotation around Y axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.
*/
public abstract void onOrientationChanged(float azimuth, float pitch, float roll);
我试图弄清楚如何添加陀螺仪数据,但我做得不对。 http://developer.android.com/reference/android/hardware/SensorEvent.html 的谷歌文档显示了一些从陀螺仪数据中获取增量矩阵的代码。这个想法似乎是我将加速计和磁传感器的滤波器调低,以使它们真正稳定。这将跟踪长期方向。
然后,我会保留来自陀螺仪的最新 N delta 矩阵的历史记录。每次我得到一个新的时,我都会放弃最旧的一个,然后将它们全部相乘以获得最终矩阵,然后将其与加速度计和磁传感器返回的稳定矩阵相乘。
这似乎不起作用。或者,至少,我的实现不起作用。结果远比加速度计更加紧张。增加陀螺仪历史记录的大小实际上会增加抖动,这让我认为我没有从陀螺仪计算正确的值。
public abstract class SensorsListener3
implements
SensorEventListener
/** The lower this is, the greater the preference which is given to previous values. (slows change) */
private static final float kFilteringFactor = 0.001f;
private static final float magKFilteringFactor = 0.001f;
public abstract boolean getIsLandscape();
@Override
public void onSensorChanged(SensorEvent event)
Sensor sensor = event.sensor;
int type = sensor.getType();
switch (type)
case Sensor.TYPE_MAGNETIC_FIELD:
mags[0] = event.values[0] * magKFilteringFactor + mags[0] * (1.0f - magKFilteringFactor);
mags[1] = event.values[1] * magKFilteringFactor + mags[1] * (1.0f - magKFilteringFactor);
mags[2] = event.values[2] * magKFilteringFactor + mags[2] * (1.0f - magKFilteringFactor);
isReady = true;
break;
case Sensor.TYPE_ACCELEROMETER:
accels[0] = event.values[0] * kFilteringFactor + accels[0] * (1.0f - kFilteringFactor);
accels[1] = event.values[1] * kFilteringFactor + accels[1] * (1.0f - kFilteringFactor);
accels[2] = event.values[2] * kFilteringFactor + accels[2] * (1.0f - kFilteringFactor);
break;
case Sensor.TYPE_GYROSCOPE:
gyroscopeSensorChanged(event);
break;
default:
return;
if(mags != null && accels != null && isReady)
isReady = false;
SensorManager.getRotationMatrix(rot, inclination, accels, mags);
boolean isLandscape = getIsLandscape();
if(isLandscape)
outR = rot;
else
// Remap the coordinates to work in portrait mode.
SensorManager.remapCoordinateSystem(rot, SensorManager.AXIS_X, SensorManager.AXIS_Z, outR);
if(gyroUpdateTime!=0)
matrixHistory.mult(matrixTmp,matrixResult);
outR = matrixResult;
SensorManager.getOrientation(outR, values);
double x180pi = 180.0 / Math.PI;
float azimuth = (float)(values[0] * x180pi);
float pitch = (float)(values[1] * x180pi);
float roll = (float)(values[2] * x180pi);
// In landscape mode swap pitch and roll and invert the pitch.
if(isLandscape)
float tmp = pitch;
pitch = -roll;
roll = -tmp;
azimuth = 180 - azimuth;
else
pitch = -pitch - 90;
azimuth = 90 - azimuth;
onOrientationChanged(azimuth,pitch,roll);
private void gyroscopeSensorChanged(SensorEvent event)
// This timestep's delta rotation to be multiplied by the current rotation
// after computing it from the gyro sample data.
if(gyroUpdateTime != 0)
final float dT = (event.timestamp - gyroUpdateTime) * NS2S;
// Axis of the rotation sample, not normalized yet.
float axisX = event.values[0];
float axisY = event.values[1];
float axisZ = event.values[2];
// Calculate the angular speed of the sample
float omegaMagnitude = (float)Math.sqrt(axisX*axisX + axisY*axisY + axisZ*axisZ);
// Normalize the rotation vector if it's big enough to get the axis
if(omegaMagnitude > EPSILON)
axisX /= omegaMagnitude;
axisY /= omegaMagnitude;
axisZ /= omegaMagnitude;
// Integrate around this axis with the angular speed by the timestep
// in order to get a delta rotation from this sample over the timestep
// We will convert this axis-angle representation of the delta rotation
// into a quaternion before turning it into the rotation matrix.
float thetaOverTwo = omegaMagnitude * dT / 2.0f;
float sinThetaOverTwo = (float)Math.sin(thetaOverTwo);
float cosThetaOverTwo = (float)Math.cos(thetaOverTwo);
deltaRotationVector[0] = sinThetaOverTwo * axisX;
deltaRotationVector[1] = sinThetaOverTwo * axisY;
deltaRotationVector[2] = sinThetaOverTwo * axisZ;
deltaRotationVector[3] = cosThetaOverTwo;
gyroUpdateTime = event.timestamp;
SensorManager.getRotationMatrixFromVector(deltaRotationMatrix, deltaRotationVector);
// User code should concatenate the delta rotation we computed with the current rotation
// in order to get the updated rotation.
// rotationCurrent = rotationCurrent * deltaRotationMatrix;
matrixHistory.add(deltaRotationMatrix);
private float[] mags = new float[3];
private float[] accels = new float[3];
private boolean isReady;
private float[] rot = new float[9];
private float[] outR = new float[9];
private float[] inclination = new float[9];
private float[] values = new float[3];
// gyroscope stuff
private long gyroUpdateTime = 0;
private static final float NS2S = 1.0f / 1000000000.0f;
private float[] deltaRotationMatrix = new float[9];
private final float[] deltaRotationVector = new float[4];
//TODO: I have no idea how small this value should be.
private static final float EPSILON = 0.000001f;
private float[] matrixMult = new float[9];
private MatrixHistory matrixHistory = new MatrixHistory(100);
private float[] matrixTmp = new float[9];
private float[] matrixResult = new float[9];
/**
Azimuth: angle between the magnetic north direction and the Y axis, around the Z axis (0 to 359). 0=North, 90=East, 180=South, 270=West
Pitch: rotation around X axis (-180 to 180), with positive values when the z-axis moves toward the y-axis.
Roll: rotation around Y axis (-90 to 90), with positive values when the x-axis moves toward the z-axis.
*/
public abstract void onOrientationChanged(float azimuth, float pitch, float roll);
public class MatrixHistory
public MatrixHistory(int size)
vals = new float[size][];
public void add(float[] val)
synchronized(vals)
vals[ix] = val;
ix = (ix + 1) % vals.length;
if(ix==0)
full = true;
public void mult(float[] tmp, float[] output)
synchronized(vals)
if(full)
for(int i=0; i<vals.length; ++i)
if(i==0)
System.arraycopy(vals[i],0,output,0,vals[i].length);
else
MathUtils.multiplyMatrix3x3(output,vals[i],tmp);
System.arraycopy(tmp,0,output,0,tmp.length);
else
if(ix==0)
return;
for(int i=0; i<ix; ++i)
if(i==0)
System.arraycopy(vals[i],0,output,0,vals[i].length);
else
MathUtils.multiplyMatrix3x3(output,vals[i],tmp);
System.arraycopy(tmp,0,output,0,tmp.length);
private int ix = 0;
private boolean full = false;
private float[][] vals;
第二个代码块包含我对添加陀螺仪的第一块代码所做的更改。
具体来说,accel 的过滤因子变小了(使值更稳定)。 MatrixHistory 类跟踪在 gyroscopeSensorChanged 方法中计算的最后 100 个陀螺仪 deltaRotationMatrix 值。
我在这个网站上看到了很多关于这个主题的问题。他们帮助我达到了这一点,但我不知道下一步该做什么。我真希望 Sensor Fusion 的人刚刚在某处发布了一些代码。很明显,他把这一切都放在了一起。
【问题讨论】:
根据《Professional Android Sensor Programming》一书,InvenSense 的 Sensor Fusion 算法是专有的,因此很难在公共访问中找到源代码。该库包含在系统级别的大多数现代设备中,因此 SENSOR.TYPE_ROTATION 已经提供了有关基于陀螺仪的短时校正的测量。我认为关于此事的最详尽的公共资源是this。我不确定它是否是一个好的替代品。 还有几篇关于使用卡尔曼滤波器进行传感器融合的学术论文。它们通常不包含源代码,但应该包含您需要的技术和数学细节。 scholar.google.com 为什么要对磁值进行低通滤波? 【参考方案1】:好吧,即使您知道卡尔曼滤波器是什么,也要为您 +1。如果你愿意,我会编辑这篇文章并给你我几年前写的代码来做你想做的事情。
但首先,我会告诉你为什么不需要它。
Android 传感器堆栈的现代实现使用 Sensor Fusion,正如 Stan 上面提到的。这只是意味着所有可用的数据——加速度、磁力、陀螺仪——都被收集在一个算法中,然后所有的输出都以 Android 传感器的形式被读出。
编辑:我刚刚偶然发现了这个关于该主题的精彩 Google 技术讲座:Sensor Fusion on Android Devices: A Revolution in Motion Processing。如果您对该主题感兴趣,值得花 45 分钟观看。
本质上,Sensor Fusion 是一个黑匣子。我查看了 Android 实现的源代码,它是一个用 C++ 编写的大卡尔曼滤波器。那里有一些非常好的代码,比我写过的任何过滤器都要复杂得多,而且可能比你写的更复杂。请记住,这些人这样做是为了谋生。
我还知道至少有一家芯片组制造商拥有自己的传感器融合实施方案。然后设备制造商根据自己的标准在 Android 和供应商实现之间进行选择。
最后,正如 Stan 上面提到的,Invensense 在芯片级有自己的传感器融合实现。
无论如何,归根结底,您设备中的内置传感器融合可能优于您或我拼凑的任何东西。所以你真正想要做的是访问它。
在 Android 中,既有物理传感器也有虚拟传感器。虚拟传感器是从可用物理传感器合成的传感器。最著名的示例是 TYPE_ORIENTATION,它采用加速度计和磁力计并创建滚动/俯仰/航向输出。 (顺便说一句,你不应该使用这个传感器;它有太多的限制。)
但重要的是,较新版本的 Android 包含这两个新的虚拟传感器:
TYPE_GRAVITY 是已过滤掉运动效果的加速度计输入 TYPE_LINEAR_ACCELERATION 是过滤掉重力分量的加速度计。
这两个虚拟传感器是通过加速度计输入和陀螺仪输入的组合合成的。
另一个值得注意的传感器是 TYPE_ROTATION_VECTOR,它是由加速度计、磁力计和陀螺仪合成的四元数。它代表了设备的完整 3 维方向,已滤除线性加速度的影响。
但是,对于大多数人来说,四元数有点抽象,而且由于您可能无论如何都在使用 3-d 转换,因此您最好的方法是通过 SensorManager.getRotationMatrix() 结合 TYPE_GRAVITY 和 TYPE_MAGNETIC_FIELD。
还有一点:如果您使用的是运行旧版 Android 的设备,则需要检测到您没有收到 TYPE_GRAVITY 事件并改用 TYPE_ACCELEROMETER。从理论上讲,这将是一个使用您自己的卡尔曼滤波器的地方,但如果您的设备没有内置传感器融合,它可能也没有陀螺仪。
无论如何,这里有一些示例代码来展示我是如何做到的。
// Requires 1.5 or above
class Foo extends Activity implements SensorEventListener
SensorManager sensorManager;
float[] gData = new float[3]; // Gravity or accelerometer
float[] mData = new float[3]; // Magnetometer
float[] orientation = new float[3];
float[] Rmat = new float[9];
float[] R2 = new float[9];
float[] Imat = new float[9];
boolean haveGrav = false;
boolean haveAccel = false;
boolean haveMag = false;
onCreate()
// Get the sensor manager from system services
sensorManager =
(SensorManager)getSystemService(Context.SENSOR_SERVICE);
onResume()
super.onResume();
// Register our listeners
Sensor gsensor = sensorManager.getDefaultSensor(Sensor.TYPE_GRAVITY);
Sensor asensor = sensorManager.getDefaultSensor(Sensor.TYPE_ACCELEROMETER);
Sensor msensor = sensorManager.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD);
sensorManager.registerListener(this, gsensor, SensorManager.SENSOR_DELAY_GAME);
sensorManager.registerListener(this, asensor, SensorManager.SENSOR_DELAY_GAME);
sensorManager.registerListener(this, msensor, SensorManager.SENSOR_DELAY_GAME);
public void onSensorChanged(SensorEvent event)
float[] data;
switch( event.sensor.getType() )
case Sensor.TYPE_GRAVITY:
gData[0] = event.values[0];
gData[1] = event.values[1];
gData[2] = event.values[2];
haveGrav = true;
break;
case Sensor.TYPE_ACCELEROMETER:
if (haveGrav) break; // don't need it, we have better
gData[0] = event.values[0];
gData[1] = event.values[1];
gData[2] = event.values[2];
haveAccel = true;
break;
case Sensor.TYPE_MAGNETIC_FIELD:
mData[0] = event.values[0];
mData[1] = event.values[1];
mData[2] = event.values[2];
haveMag = true;
break;
default:
return;
if ((haveGrav || haveAccel) && haveMag)
SensorManager.getRotationMatrix(Rmat, Imat, gData, mData);
SensorManager.remapCoordinateSystem(Rmat,
SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, R2);
// Orientation isn't as useful as a rotation matrix, but
// we'll show it here anyway.
SensorManager.getOrientation(R2, orientation);
float incl = SensorManager.getInclination(Imat);
Log.d(TAG, "mh: " + (int)(orientation[0]*DEG));
Log.d(TAG, "pitch: " + (int)(orientation[1]*DEG));
Log.d(TAG, "roll: " + (int)(orientation[2]*DEG));
Log.d(TAG, "yaw: " + (int)(orientation[0]*DEG));
Log.d(TAG, "inclination: " + (int)(incl*DEG));
嗯;如果您碰巧有一个四元数库,那么接收 TYPE_ROTATION_VECTOR 并将其转换为数组可能更简单。
【讨论】:
是否有机会在本机端访问这些数据?大多数东西都没有通过sensor.h中的NDK暴露 你有没有让这一切正常工作,我的仍然很紧张,我有一个低通滤波器 你好,爱德华,这是一个很好的解释,我已经尝试了一段时间。你能告诉我为什么需要使用SensorManager.remapCoordinateSystem
吗?谢谢。
Android 上的传感器系统不知道也不关心您的设备是如何旋转的。每个设备都有自己的坐标系,+X 向右,+Y 向上,+Z 向你。如果设备旋转,例如横向的手机,您需要将传感器坐标转换为对您握持设备的方式有意义的值。这究竟意味着什么取决于您的应用程序。 remapcoordinateSystem() 是一个在这里很有用的辅助函数。我还有一些笔记efalk.org/Docs/Android/sensors_0.html#remapCoordinateSystem
Here's a sensor fusion library 这可能很有趣。【参考方案2】:
关于在哪里可以找到完整代码的问题,这是 Android 果冻豆的默认实现:https://android.googlesource.com/platform/frameworks/base/+/jb-release/services/sensorservice/ 首先检查 fusion.cpp/h。 它使用修改后的罗德里格斯参数(接近欧拉角)而不是四元数。除了方向之外,卡尔曼滤波器还估计陀螺漂移。对于测量更新,它使用磁力计,并且有点不正确地使用加速度(比力)。
要使用该代码,您应该是一个向导或了解 INS 和 KF 的基础知识。许多参数必须经过微调才能使过滤器正常工作。正如爱德华所说,这些人这样做是为了生活。
至少在 google 的 Galaxy nexus 中,这个默认实现未被使用,并被 Invense 的专有系统覆盖。
【讨论】:
以上是关于使用 Android 陀螺仪代替加速度计。我发现很多零碎的东西,但没有完整的代码的主要内容,如果未能解决你的问题,请参考以下文章