有人知道我可以使用的基于 Python 的优秀网络爬虫吗?

Posted

技术标签:

【中文标题】有人知道我可以使用的基于 Python 的优秀网络爬虫吗?【英文标题】:Anyone know of a good Python based web crawler that I could use? 【发布时间】:2010-09-29 23:21:46 【问题描述】:

我有点想自己写,但我现在真的没有足够的时间。我已经看过open source crawlers 的***列表,但我更喜欢用 Python 编写的东西。我意识到我可能只使用 Wikipedia 页面上的一种工具并将其包装在 Python 中。我最终可能会这样做 - 如果有人对这些工具有任何建议,我愿意听取他们的意见。我通过它的网络界面使用了 Heritrix,我发现它非常麻烦。我绝对不会在即将到来的项目中使用浏览器 API。

提前致谢。另外,这是我的第一个 SO 问题!

【问题讨论】:

pypi.python.org/pypi/crawler/0.1.0 pycurl 也不错。 pycurl.sourceforge.net Hound是一个用python开发的简单的网络爬虫。 【参考方案1】: Mechanize 是我的最爱;强大的高级浏览功能(超级简单的表单填写和提交)。 Twill 是一种建立在 Mechanize 之上的简单脚本语言 BeautifulSoup + urllib2 也很好用。 Scrapy 看起来是一个非常有前途的项目;这是新的。

【讨论】:

将 urrlib2 添加到 Beautiful Soup 中,您就有了很好的工具组合。 那些库可以用来爬虫,但它们本身不是爬虫 例如,使用scrapy,为抓取创建一套规则真的很简单。其他的没试过,但是 Scrapy 确实是一段不错的代码。 @RexE,关于如何使用 Mechanize 从特定网页收集数据的任何建议,或者关于如何使用 Mechanize 做一些实际工作的任何示例,而不仅仅是演示?提前致谢。【参考方案2】:

使用Scrapy。

它是一个基于twisted的网络爬虫框架。仍在大力开发中,但它已经可以工作了。有很多好东西:

内置支持解析 html、XML、CSV 和 javascript 一种媒体管道,用于使用图像(或任何其他媒体)抓取项目并下载图像文件 支持通过使用中间件、扩展和管道插入您自己的功能来扩展 Scrapy 广泛的内置中间件和扩展,用于处理压缩、缓存、cookie、身份验证、用户代理欺骗、robots.txt 处理、统计、抓取深度限制等 交互式抓取shell控制台,对开发和调试非常有用 用于监视和控制机器人的 Web 管理控制台 用于对 Scrapy 进程进行低级访问的 Telnet 控制台

通过在返回的 HTML 上使用 XPath 选择器来提取有关今天添加到 mininova torrent 站点中的所有 torrent 文件信息的示例代码:

class Torrent(ScrapedItem):
    pass

class MininovaSpider(CrawlSpider):
    domain_name = 'mininova.org'
    start_urls = ['http://www.mininova.org/today']
    rules = [Rule(RegexLinkExtractor(allow=['/tor/\d+']), 'parse_torrent')]

    def parse_torrent(self, response):
        x = HtmlXPathSelector(response)
        torrent = Torrent()

        torrent.url = response.url
        torrent.name = x.x("//h1/text()").extract()
        torrent.description = x.x("//div[@id='description']").extract()
        torrent.size = x.x("//div[@id='info-left']/p[2]/text()[2]").extract()
        return [torrent]

【讨论】:

【参考方案3】:

查看HarvestMan,一个用Python编写的多线程网络爬虫,也看看spider.py模块。

here 你可以找到代码示例来构建一个简单的网络爬虫。

【讨论】:

【参考方案4】:

我用过Ruya,感觉还不错。

【讨论】:

Ruya好像不能下载了?我在任何地方都找不到他们的压缩包。【参考方案5】:

我破解了上面的脚本以包含一个登录页面,因为我需要它来访问一个 drupal 站点。不漂亮,但可以帮助那里的人。

#!/usr/bin/python

import httplib2
import urllib
import urllib2
from cookielib import CookieJar
import sys
import re
from HTMLParser import HTMLParser

class miniHTMLParser( HTMLParser ):

  viewedQueue = []
  instQueue = []
  headers = 
  opener = ""

  def get_next_link( self ):
    if self.instQueue == []:
      return ''
    else:
      return self.instQueue.pop(0)


  def gethtmlfile( self, site, page ):
    try:
        url = 'http://'+site+''+page
        response = self.opener.open(url)
        return response.read()
    except Exception, err:
        print " Error retrieving: "+page
        sys.stderr.write('ERROR: %s\n' % str(err))
    return "" 

    return resppage

  def loginSite( self, site_url ):
    try:
    cj = CookieJar()
    self.opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(cj))

    url = 'http://'+site_url 
        params = 'name': 'customer_admin', 'pass': 'customer_admin123', 'opt': 'Log in', 'form_build_id': 'form-3560fb42948a06b01d063de48aa216ab', 'form_id':'user_login_block'
    user_agent = 'Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)'
    self.headers =  'User-Agent' : user_agent 

    data = urllib.urlencode(params)
    response = self.opener.open(url, data)
    print "Logged in"
    return response.read() 

    except Exception, err:
    print " Error logging in"
    sys.stderr.write('ERROR: %s\n' % str(err))

    return 1

  def handle_starttag( self, tag, attrs ):
    if tag == 'a':
      newstr = str(attrs[0][1])
      print newstr
      if re.search('http', newstr) == None:
        if re.search('mailto', newstr) == None:
          if re.search('#', newstr) == None:
            if (newstr in self.viewedQueue) == False:
              print "  adding", newstr
              self.instQueue.append( newstr )
              self.viewedQueue.append( newstr )
          else:
            print "  ignoring", newstr
        else:
          print "  ignoring", newstr
      else:
        print "  ignoring", newstr


def main():

  if len(sys.argv)!=3:
    print "usage is ./minispider.py site link"
    sys.exit(2)

  mySpider = miniHTMLParser()

  site = sys.argv[1]
  link = sys.argv[2]

  url_login_link = site+"/node?destination=node"
  print "\nLogging in", url_login_link
  x = mySpider.loginSite( url_login_link )

  while link != '':

    print "\nChecking link ", link

    # Get the file from the site and link
    retfile = mySpider.gethtmlfile( site, link )

    # Feed the file into the HTML parser
    mySpider.feed(retfile)

    # Search the retfile here

    # Get the next link in level traversal order
    link = mySpider.get_next_link()

  mySpider.close()

  print "\ndone\n"

if __name__ == "__main__":
  main()

【讨论】:

【参考方案6】:

相信我,没有什么比 curl 更好的了……以下代码可以在不到 300 秒的时间内在 Amazon EC2 上并行抓取 10,000 个 url

注意: 不要以如此高的速度访问同一个域.. .

#! /usr/bin/env python
# -*- coding: iso-8859-1 -*-
# vi:ts=4:et
# $Id: retriever-multi.py,v 1.29 2005/07/28 11:04:13 mfx Exp $

#
# Usage: python retriever-multi.py <file with URLs to fetch> [<# of
#          concurrent connections>]
#

import sys
import pycurl

# We should ignore SIGPIPE when using pycurl.NOSIGNAL - see
# the libcurl tutorial for more info.
try:
    import signal
    from signal import SIGPIPE, SIG_IGN
    signal.signal(signal.SIGPIPE, signal.SIG_IGN)
except ImportError:
    pass


# Get args
num_conn = 10
try:
    if sys.argv[1] == "-":
        urls = sys.stdin.readlines()
    else:
        urls = open(sys.argv[1]).readlines()
    if len(sys.argv) >= 3:
        num_conn = int(sys.argv[2])
except:
    print "Usage: %s <file with URLs to fetch> [<# of concurrent connections>]" % sys.argv[0]
    raise SystemExit


# Make a queue with (url, filename) tuples
queue = []
for url in urls:
    url = url.strip()
    if not url or url[0] == "#":
        continue
    filename = "doc_%03d.dat" % (len(queue) + 1)
    queue.append((url, filename))


# Check args
assert queue, "no URLs given"
num_urls = len(queue)
num_conn = min(num_conn, num_urls)
assert 1 <= num_conn <= 10000, "invalid number of concurrent connections"
print "PycURL %s (compiled against 0x%x)" % (pycurl.version, pycurl.COMPILE_LIBCURL_VERSION_NUM)
print "----- Getting", num_urls, "URLs using", num_conn, "connections -----"


# Pre-allocate a list of curl objects
m = pycurl.CurlMulti()
m.handles = []
for i in range(num_conn):
    c = pycurl.Curl()
    c.fp = None
    c.setopt(pycurl.FOLLOWLOCATION, 1)
    c.setopt(pycurl.MAXREDIRS, 5)
    c.setopt(pycurl.CONNECTTIMEOUT, 30)
    c.setopt(pycurl.TIMEOUT, 300)
    c.setopt(pycurl.NOSIGNAL, 1)
    m.handles.append(c)


# Main loop
freelist = m.handles[:]
num_processed = 0
while num_processed < num_urls:
    # If there is an url to process and a free curl object, add to multi stack
    while queue and freelist:
        url, filename = queue.pop(0)
        c = freelist.pop()
        c.fp = open(filename, "wb")
        c.setopt(pycurl.URL, url)
        c.setopt(pycurl.WRITEDATA, c.fp)
        m.add_handle(c)
        # store some info
        c.filename = filename
        c.url = url
    # Run the internal curl state machine for the multi stack
    while 1:
        ret, num_handles = m.perform()
        if ret != pycurl.E_CALL_MULTI_PERFORM:
            break
    # Check for curl objects which have terminated, and add them to the freelist
    while 1:
        num_q, ok_list, err_list = m.info_read()
        for c in ok_list:
            c.fp.close()
            c.fp = None
            m.remove_handle(c)
            print "Success:", c.filename, c.url, c.getinfo(pycurl.EFFECTIVE_URL)
            freelist.append(c)
        for c, errno, errmsg in err_list:
            c.fp.close()
            c.fp = None
            m.remove_handle(c)
            print "Failed: ", c.filename, c.url, errno, errmsg
            freelist.append(c)
        num_processed = num_processed + len(ok_list) + len(err_list)
        if num_q == 0:
            break
    # Currently no more I/O is pending, could do something in the meantime
    # (display a progress bar, etc.).
    # We just call select() to sleep until some more data is available.
    m.select(1.0)


# Cleanup
for c in m.handles:
    if c.fp is not None:
        c.fp.close()
        c.fp = None
    c.close()
m.close()

【讨论】:

【参考方案7】:

另一个simple spider 使用 BeautifulSoup 和 urllib2。没什么太复杂的,只是读取所有的 href 构建一个列表并通过它。

【讨论】:

【参考方案8】:

pyspider.py

【讨论】:

以上是关于有人知道我可以使用的基于 Python 的优秀网络爬虫吗?的主要内容,如果未能解决你的问题,请参考以下文章

Python 帮助 - 添加基于日期范围创建列

学 Java 网络爬虫,需要哪些基础知识?

使用 OpenCV 和 Python 显示网络摄像头源

我是 python 新手,我偶然发现了一个函数/变量?我不知道它是做啥的,有人可以解释一下吗? [复制]

Python网络编程02/基于TCP协议的socket简单的通信

红队最喜欢的18 种优秀的网络安全渗透工具