比较两个数据集并获取更改了哪些字段
Posted
技术标签:
【中文标题】比较两个数据集并获取更改了哪些字段【英文标题】:Compare two dataset and get what fields are changed 【发布时间】:2019-08-20 11:37:12 【问题描述】:我正在使用 Java 开发 spark,我将从 api 下载数据并与 mongodb 数据进行比较,而下载的 json 有 15-20 个字段,但数据库有 300 个字段。
现在我的任务是将下载的 jsons 与 mongodb 数据进行比较,并获取过去数据更改的任何字段。
样本数据集
从 API 下载的数据
StudentId,Name,Phone,Email
1,tony,123,a@g.com
2,stark,456,b@g.com
3,spidy,789,c@g.com
MongoDB 数据
StudentId,Name,Phone,Email,State,City
1,tony,1234,a@g.com,NY,Nowhere
2,stark,456,bg@g.com,NY,Nowhere
3,spidy,789,c@g.com,OH,Nowhere
由于列长,我不能使用 except。
预期输出
StudentId,Name,Phone,Email,Past_Phone,Past_Email
1,tony,1234,a@g.com,1234, //phone number only changed
2,stark,456,b@g.com,,bg@g.com //Email only changed
3,spidy,789,c@g.com,,
【问题讨论】:
【参考方案1】:考虑您的数据位于 2 个数据帧中。我们可以为它们创建临时视图,如下图,
api_df.createOrReplaceTempView("api_data")
mongo_df.createOrReplaceTempView("mongo_data")
接下来我们可以使用 Spark SQL。在这里,我们使用 StudentId
列连接这两个视图,然后在它们之上使用 case 语句来计算过去的电话号码和电子邮件。
spark.sql("""
select a.*
, case when a.Phone = b.Phone then '' else b.Phone end as Past_phone
, case when a.Email = b.Email then '' else b.Email end as Past_Email
from api_data a
join mongo_data b
on a.StudentId = b.StudentId
order by a.StudentId""").show()
输出:
+---------+-----+-----+-------+----------+----------+
|StudentId| Name|Phone| Email|Past_phone|Past_Email|
+---------+-----+-----+-------+----------+----------+
| 1| tony| 123|a@g.com| 1234| |
| 2|stark| 456|b@g.com| | bg@g.com|
| 3|spidy| 789|c@g.com| | |
+---------+-----+-----+-------+----------+----------+
【讨论】:
【参考方案2】:请在下面找到相同的源代码。这里我以唯一的电话号码条件为例。
val list = List((1,"tony",123,"a@g.com"), (2,"stark",456,"b@g.com")
(3,"spidy",789,"c@g.com"))
val df1 = list.toDF("StudentId","Name","Phone","Email")
.select('StudentId as "StudentId_1", 'Name as "Name_1",'Phone as "Phone_1",
'Email as "Email_1")
df1.show()
val list1 = List((1,"tony",1234,"a@g.com","NY","Nowhere"),
(2,"stark",456,"bg@g.com", "NY", "Nowhere"),
(3,"spidy",789,"c@g.com","OH","Nowhere"))
val df2 = list1.toDF("StudentId","Name","Phone","Email","State","City")
.select('StudentId as "StudentId_2", 'Name as "Name_2", 'Phone as "Phone_2",
'Email as "Email_2", 'State as "State_2", 'City as "City_2")
df2.show()
val df3 = df1.join(df2, df1("StudentId_1") ===
df2("StudentId_2")).where(df1("Phone_1") =!= df2("Phone_2"))
df3.withColumnRenamed("Phone_1", "Past_Phone").show()
+-----------+------+-------+-------+
|StudentId_1|Name_1|Phone_1|Email_1|
+-----------+------+-------+-------+
| 1| tony| 123|a@g.com|
| 2| stark| 456|b@g.com|
| 3| spidy| 789|c@g.com|
+-----------+------+-------+-------+
+-----------+------+-------+--------+-------+-------+
|StudentId_2|Name_2|Phone_2| Email_2|State_2| City_2|
+-----------+------+-------+--------+-------+-------+
| 1| tony| 1234| a@g.com| NY|Nowhere|
| 2| stark| 456|bg@g.com| NY|Nowhere|
| 3| spidy| 789| c@g.com| OH|Nowhere|
+-----------+------+-------+--------+-------+-------+
+-----------+------+----------+-------+-----------+------+-------+-------+-------+-------+
|StudentId_1|Name_1|Past_Phone|Email_1|StudentId_2|Name_2|Phone_2|Email_2|State_2| City_2|
+-----------+------+----------+-------+-----------+------+-------+-------+-------+-------+
| 1| tony| 123|a@g.com| 1| tony| 1234|a@g.com| NY|Nowhere|
+-----------+------+----------+-------+-----------+------+-------+-------+-------+-------+
【讨论】:
谢谢您的快速回答,但是,我的预期表不应该有状态,城市。如果不为空,应该只显示更改的字段。我提前我不知道 df1 中的哪些字段正在更改,所以它应该是动态的 好的。我们是否有任何特定的列将永远存在?【参考方案3】:我们有:
df1.show
+-----------+------+-------+-------+
|StudentId_1|Name_1|Phone_1|Email_1|
+-----------+------+-------+-------+
| 1| tony| 123|a@g.com|
| 2| stark| 456|b@g.com|
| 3| spidy| 789|c@g.com|
+-----------+------+-------+-------+
df2.show
+-----------+------+-------+--------+-------+-------+
|StudentId_2|Name_2|Phone_2| Email_2|State_2| City_2|
+-----------+------+-------+--------+-------+-------+
| 1| tony| 1234| a@g.com| NY|Nowhere|
| 2| stark| 456|bg@g.com| NY|Nowhere|
| 3| spidy| 789| c@g.com| OH|Nowhere|
+-----------+------+-------+--------+-------+-------+
加入后:
var jn = df2.join(df1,df1("StudentId_1")===df2("StudentId_2"))
然后
var ans = jn.withColumn("Past_Phone", when(jn("Phone_2").notEqual(jn("Phone_1")),jn("Phone_1")).otherwise("")).withColumn("Past_Email", when(jn("Email_2").notEqual(jn("Email_1")),jn("Email_1")).otherwise(""))
参考:Spark: Add column to dataframe conditionally
下一步:
ans.select(ans("StudentId_2") as "StudentId",ans("Name_2") as "Name",ans("Phone_2") as "Phone",ans("Email_2") as "Email",ans("Past_Email"),ans("Past_Phone")).show
+---------+-----+-----+--------+----------+----------+
|StudentId| Name|Phone| Email|Past_Email|Past_Phone|
+---------+-----+-----+--------+----------+----------+
| 1| tony| 1234| a@g.com| | 123|
| 2|stark| 456|bg@g.com| b@g.com| |
| 3|spidy| 789| c@g.com| | |
+---------+-----+-----+--------+----------+----------+
【讨论】:
以上是关于比较两个数据集并获取更改了哪些字段的主要内容,如果未能解决你的问题,请参考以下文章
Apache Spark Java - 如何遍历行数据集并删除空字段