TypeError: can't pickle generator objects: Spark collect() 由于不可序列化的生成器返回类型(dict_key)而失败
Posted
技术标签:
【中文标题】TypeError: can\'t pickle generator objects: Spark collect() 由于不可序列化的生成器返回类型(dict_key)而失败【英文标题】:TypeError: can't pickle generator objects: Spark collect() fails due to unserializable generator return type (dict_key)TypeError: can't pickle generator objects: Spark collect() 由于不可序列化的生成器返回类型(dict_key)而失败 【发布时间】:2019-02-26 06:36:34 【问题描述】:我有一个库函数,它返回一个包含生成器的复合对象,它不能被腌制(尝试腌制会产生错误TypeError: can't pickle dict_keys objects
)。
当我尝试通过 Spark 进行并行化时,由于 pickle 失败(注意通过 DataBricks 运行,默认为 sc
),它在收集步骤中失败。
这是一个最小的复制:
test_list = ["a": 1, "b": 2, "c": 3,
"a": 7, "b": 3, "c": 5,
"a": 2, "b": 3, "c": 4,
"a": 9, "b": 8, "c": 7]
parallel_test_list = sc.parallelize(test_list)
parallel_results = parallel_test_list.map(lambda x: x.keys())
local_results = parallel_results.collect()
我收到的堆栈跟踪很长,我认为相关部分是:
Traceback (most recent call last):
File "/databricks/spark/python/pyspark/worker.py", line 403, in main
process()
File "/databricks/spark/python/pyspark/worker.py", line 398, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/databricks/spark/python/pyspark/serializers.py", line 418, in dump_stream
bytes = self.serializer.dumps(vs)
File "/databricks/spark/python/pyspark/serializers.py", line 597, in dumps
return pickle.dumps(obj, protocol)
TypeError: can't pickle dict_keys objects
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:490)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:626)
at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:609)
【问题讨论】:
【参考方案1】:您可以编写一个递归辅助函数来“使用”所有嵌套的生成器对象,并使用此函数map
rdd
中的所有行。
例如,这是一个将嵌套生成器转换为list
s 的函数:
from inspect import isgenerator, isgeneratorfunction
def consume_all_generators(row):
if isinstance(row, str):
return row
elif isinstance(row, dict):
return k: consume_all_generators(v) for k, v in row.items()
output = []
try:
for val in row:
if isgenerator(val) or isgeneratorfunction(val):
output.append(list(consume_all_generators(val)))
else:
output.append(consume_all_generators(val))
return output
except TypeError:
return row
现在在collect
之前调用map(consume_all_generators)
:
local_results = parallel_results.map(consume_all_generators).collect()
print(local_results)
#[['a', 'c', 'b'], ['a', 'c', 'b'], ['a', 'c', 'b'], ['a', 'c', 'b']]
【讨论】:
以上是关于TypeError: can't pickle generator objects: Spark collect() 由于不可序列化的生成器返回类型(dict_key)而失败的主要内容,如果未能解决你的问题,请参考以下文章
TypeError: can't pickle memoryview objects when running basic add.delay(1,2) test
TypeError: can't pickle generator objects: Spark collect() 由于不可序列化的生成器返回类型(dict_key)而失败
pickle.PicklingError: Can't pickle: it's not the same object as
MUI 的 Autocomplete AS MULTIPLE input + react-hook-form + 控制默认值不起作用(TypeError: Can't read property 'f
pickle.PicklingError: Can't pickle <function past_match_sim at 0x7fa26e03b7b8>: attribute look
multiprocessing.Pool - PicklingError: Can't pickle <type 'thread.lock'>: 属性查找 thread.lock 失败